2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Геометры и градусы
Сообщение28.12.2017, 17:34 
Аватара пользователя
priz в сообщении #1279499 писал(а):
кроме этой темы остальное лес дремучий
Вы хотите сказать, что в этой теме у Вас не лес дремучий, а солнечная поляна? Вам померещилось. Должно быть, так долго в этом лесу блуждали без еды и сна, что уже и в глазах потемнело.

priz в сообщении #1279499 писал(а):
радианметр за секунду, судя по множителям
Извините, скорость измеряется в м/с.

 
 
 
 Re: Геометры и градусы
Сообщение28.12.2017, 17:40 
Вы абсолютно правы! Так что там в левой части не так, объясните уж пожалуйста дураку мне эдакому.

 
 
 
 Re: Геометры и градусы
Сообщение28.12.2017, 21:40 
Аватара пользователя
priz в сообщении #1279520 писал(а):
Так что там в левой части не так
А что там "так"? Написаны какие-то непонятные буковки. И что? Вы обещали решение без использования числа $\pi$, а оно в вашем непонятном сообщении встречается два раза. Вы не в состоянии написать текст, который мог бы понять другой человек? Телепатов у нас нет.

 
 
 
 Re: Геометры и градусы
Сообщение28.12.2017, 22:05 
Как-раз то решение и есть, где нет $\pi$

-- 28.12.2017, 23:07 --

Кто рассудит?

 
 
 
 Re: Геометры и градусы
Сообщение28.12.2017, 23:14 
Согласен. Язык мой корявый, и диалект не местный. Что-ж, по-крайней мере я пытался... .
И, да! Про сумбурную задачку.
Она представлялась как:
На краю диска1,ось которого перпендикулярна плоскости вращения, закреплена ось диска2 в плоскости вращения несущего диска. Плоскость вращения диска2 перпендикулярна своей оси.
На краю диска2 закреплена ось диска3, параллельная оси диска2. Диск3 вращается в плоскости вращения диска2.
Диск4 закреплен и вращается на краю диска3 таким же образом как и сам диск3 относительно диска2.
Все 4-ре оси в начале вращения находятся на одной прямой.
Про это хоть понятно изложено?

 
 
 
 Re: Геометры и градусы
Сообщение29.12.2017, 00:51 
Аватара пользователя
priz в сообщении #1279602 писал(а):
Кто рассудит?

Хм... Вот, например, математик, записывая какую-никакую формулу, озаботится, чтобы все входящие в нее буковки что-то значили, причем это значение должно быть понятно читателю.

priz в сообщении #1279193 писал(а):
$\frac{\sin dx}{dt}\to 2 \pi\ n $
Т.е.
$\frac{\sin dx \cdot\rho }{dt}=\upsilon$ м/с$

Возникают вопросы
    Что такое $dx$?
    Что такое $dt$?
    Что такое $n$?
    Что такое $\upsilon$? (и чем оно хуже просто $v$?)
    Что такое $\pi$ и зачем оно тут?

Что такое $\rho$, вы сказали... Что такое синус -- не спрашиваю... Хотя... Это совсем нетривиальный вопрос.

 
 
 
 Re: Геометры и градусы
Сообщение29.12.2017, 08:21 
provincialka в сообщении #1279658 писал(а):
Хм... Вот, например, математик, записывая какую-никакую формулу, озаботится, чтобы все входящие в нее буковки что-то значили, причем это значение должно быть понятно читателю.
Возникают вопросы
    Что такое $dx$?
    Что такое $dt$?
    Что такое $n$?
    Что такое $\upsilon$? (и чем оно хуже просто $v$?)
    Что такое $\pi$ и зачем оно тут?

Что такое $\rho$, вы сказали... Что такое синус -- не спрашиваю... Хотя... Это совсем нетривиальный вопрос.


$dx$ - самое наименьшее значение угла из возможного, как можно меньше, но не 0
$dt$ - время соответствующее данному углу поворота
$n$ - как обычно 1/с, частота вращения
Что такое $\upsilon$? (и чем оно хуже просто $v$?) . Да ничем, одно и тоже.
А синус - Тригонометрическая функция угла, в прямоугольном треугольнике равная отношению катета противолежащего угла к гипотенузе.(см в яндексе)

-- 29.12.2017, 10:05 --

И еще, где стрелочка- указание на стремление к аналогу. Хотя возможен и знак равенства. Но я не специалист, только предположение. Проверьте.
Все это (формулы-буковками) надо рассматривать в пределах, чего сам не умею.

 
 
 
 Re: Геометры и градусы
Сообщение29.12.2017, 13:05 
priz в сообщении #1279622 писал(а):
Все 4-ре оси в начале вращения находятся на одной прямой.

исправляю на:
Все 4-ре оси в начале вращения пересекаются одной перпендикулярной прямой.

-- 29.12.2017, 14:16 --

это для описания траектории движения точки на диске4.
Теперь, вроде так.

(Оффтоп)

Мой учитель физики в школе, выставляя отметку в аттестате сказал: " Предмет ты знаешь на отлично,
но ставлю 4, чтобы при поступлении не завалили"


-- 29.12.2017, 14:30 --

частота и направление вращения дисков выбирается каким угодно. Нужна траектория и скорость в любом интересующем месте.

-- 29.12.2017, 14:34 --

при условии: частота вращения любого из дисков не равна 0.

 
 
 
 Re: Геометры и градусы
Сообщение29.12.2017, 14:53 
Аватара пользователя
Очередная порция бредятины:
priz в сообщении #1279681 писал(а):
$dx$ - самое наименьшее значение угла из возможного, как можно меньше, но не 0
$dt$ - время соответствующее данному углу поворота
И что же это за "самое наименьшее значение угла из возможного, как можно меньше, но не 0"? Укажите конкретное значение.

Кстати, а что получится, если это "самое наименьшее значение угла из возможного, как можно меньше, но не 0" умножить на $\frac 12$?

 
 
 
 Re: Геометры и градусы
Сообщение29.12.2017, 16:25 
Вы же прекрасно знаете, что значение станет меньше в 2 раза, но 0 стать не сможет

-- 29.12.2017, 17:25 --

(Оффтоп)

спасибо, не ожидал


-- 29.12.2017, 17:29 --

Про задачу. Это не просьба о её решении, а вопрос: возможно ли решение? Если описание понятно.

 
 
 
 Re: Геометры и градусы
Сообщение29.12.2017, 16:32 
priz в сообщении #1279844 писал(а):
Вы же прекрасно знаете, что значение станет меньше в 2 раза, но 0 стать не сможет
Как же оно тогда будет наименьшим, если есть что-то меньше него?

-- Пт дек 29, 2017 18:34:47 --

priz в сообщении #1279844 писал(а):
Про задачу. Это не просьба о её решении, а вопрос: возможно ли решение? Если описание понятно.
Если допустить, что понятно, то почему там, скажем, четыре диска, а не два и не сорок два? И что там надо найти, траекторию точки на последнем диске? Запросто решается, только надо задать угловые скорости вращения каждого. Но как вообще эта задача связана с обсуждаемым?

 
 
 
 Re: Геометры и градусы
Сообщение29.12.2017, 16:37 
А про "наименьшее", говорил-же: с пределами ознакомлен. Поняв принцип, использовал в буквальном смысле. Т.е. интересуемое число делил на 10 в 20 степени, или умножал на 10 в -20(например)

-- 29.12.2017, 17:46 --

Да все равно сколь и чего куда-либо движется. Просто описал эту цепочку движения. А найти надо ЦУ и тагенциальное ускорение в любой точке траектории.

-- 29.12.2017, 17:51 --

Так что-ж там с нахождением частоты и скорости без радиан? Достучался или еще что не понятно?

 
 
 
 Re: Геометры и градусы
Сообщение29.12.2017, 16:52 
Аватара пользователя
priz в сообщении #1279849 писал(а):
А про "наименьшее", говорил-же: с пределами ознакомлен.
Вовсе Вы с пределами не разобрались. Бредите, да и только.
priz в сообщении #1279849 писал(а):
Поняв принцип, использовал в буквальном смысле. Т.е. интересуемое число делил на 10 в 20 степени, или умножал на 10 в -20(например)
А нету в пределах такого принципа, чтобы "интересуемое число делил на 10 в 20 степени, или умножал на 10 в -20".

Вы же заявили о наименьшем числе, которое больше нуля, но не ноль. А оно, оказывается не наименьшее, раз
priz в сообщении #1279844 писал(а):
значение станет меньше в 2 раза, но 0 стать не сможет

 
 
 
 Re: Геометры и градусы
Сообщение29.12.2017, 16:58 
Связка задачи и обсуждаемого самая прямая. Формула скорости- производная (от слова производить) от ЦУ.

-- 29.12.2017, 18:02 --

Вы пытаетесь объяснить мне принцип предела? Данное понимание взято из первоисточника.

 
 
 
 Re: Геометры и градусы
Сообщение29.12.2017, 17:03 
Аватара пользователя
Someone в сообщении #1278433 писал(а):
Имеется у нас круглый диск с радиусом один метр. Ось вращения диска перпендикулярна его плоскости и проходит через его центр. Диск вращается равномерно, делая один оборот в секунду. Пусть точка $A$ находится на границе диска. Найдите её скорость и ускорение.
Ответ требуется в виде численного значения в стандартной СИ. Пока Вы не написали ничего, кроме бессмысленных выражений.

 
 
 [ Сообщений: 64 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group