Для начала замечу, что ответ без знания n и m не получится. Скажем, если предадимся складоножеству, и подвыборки будем брать объёмом (n-1), границы будут очень близки по ширине к таковым для полной выборки, и почти половина окажется в силу случайности за пределами границ для полной. С другой стороны, очень маленькие подвыборки будут давать огромные значения корреляций. Соответственно, может оказаться, что даже при очень широких для такой малой выборки границах интервала корреляция настолько отлична от корреляции для полной выборки, что "забросов" окажется много.
Для грубой оценки положим, что объёмы и выборки и подвыборок достаточно велики, и
Тогда корреляции в подвыборках можно рассматривать, как нормально распределённые случайные величины со среднеквадратичным отклонением
, где сигма это СКО для полной выборки. Положим, что истинная корреляция=0, и что корреляции по подвыборкам имеют матожидание равное рассчитанному по полной выборке значению корреляции. Тогда вопрос сводится к тому, какова вероятность, что случайная величина с СКО
, к которой прибавлена константа
(полученная умножением 90% квантиля 1.282 на корень из двух) окажется меньше
, что сводится к тому, какова вероятность, что стандартная нормальная величина меньше -0.53, а она равна 29.8%.
На второй вопрос замечу, что нормально распределены они не будут никогда. Просто в силу того, что нормальное распределение сосредоточено не на конечном отрезке, как коэффициенты корреляции. Они будут иметь распределение, с практической точки зрения аппроксимируемое нормальным. При этом аппроксимация возможна, и если исходные величины имели иное распределение. Насколько быстро будет сходиться - не могу сказать. Была бы практическая потребность, боюсь, довольствовался бы численным экспериментом.