Иными словами, напряженность поля на самой сфере можно взять произвольной, она ни на что не влияет.
Ну не то что бы произвольной, всё-таки, половина -- это каноническое значение, получаемое прямым вычислением интеграла по сфере (который существует в абсолютно классическом смысле и называется "прямое значение потенциала двойного слоя"), см. здесь, например
https://ru.wikipedia.org/wiki/Ньютонов_потенциал#Потенциал_двойного_слоя
Объяснить "физически" это можно так: рассмотрим маленький элемент поверхности сферы и посчитаем его точечным зарядом. Тогда половина силовых линий от него пойдёт внутрь сферы (и через некоторое время из неё выйдет), половина сразу пойдёт наружу сферы и далее там и останется. Таким образом, суммарный поток от всех поверхностных зарядов через всю сферу будет равен половине потока через, например, чуть большую сферу. Из симметрии задачи понятно, чему будет равна напряжённость.
Та же идея, что и с вычислением интегралов через полувычет.
Разумеется, сфера предполагается идеальной с равномерным поверхностным распределением заряда. Плотность заряда является обобщенной функцией, но поле является абсолютно классической функцией (хоть и разрывной, но определённой во всех точках), потому что интегрирование повышает регулярность.