2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Атом Томсона и магнитно-дипольное излучение
Сообщение22.10.2017, 19:34 
Заслуженный участник
Аватара пользователя


06/04/13
1916
Москва
Попалась мне на глаза задача из сборника Алексеева по классической электродинамике. Речь идёт об атоме Томсона, который автором определяется как неподвижный равномерно заряженный по объёму шар с электроном внутри, совершающим колебания. Всё, как обычно. Ставится вопрос: есть ли в данном случае магнитно-дипольное излучение.
Значит, есть стандартная формула
$$I=\frac{2}{3c^3}\ddot{\vec{\mu}}^2.$$Магнитный момент по определению
$$\vec{\mu}=\frac{e}{2c}\left[\vec{r},\vec{v}\right].$$Дважды дифференцируем по времени:
$$\dot{\vec{\mu}}=\frac{e}{2c}\left[\vec{r},\vec{w}\right],$$
$$\ddot{\vec{\mu}}=\frac{e}{2c}\left[\vec{v},\vec{w}\right]+\frac{e}{2c}\left[\vec{r},\dot{\vec{w}}\right].$$Уравнение движения электрона (начало координат выбрано в центре шара)
$$m\vec{w}=-e\frac{\vec{r}}{R^3}\Rightarrow \vec{w}=-\frac{e}{mR^3}\vec{r},\;\dot{\vec{w}}=-\frac{e}{mR^3}\vec{v}.$$Таким образом,
$$\ddot{\vec{\mu}}=-\frac{e^2}{2mR^3c}\left[\vec{v},\vec{r}\right]-\frac{e^2}{2mR^3c}\left[\vec{r},\vec{v}\right]=0.$$ Получается, что никакого магнитно-дипольного излучения быть не должно.

Читаем у Алексеева: излучение отсутствует в системе центра инерции, а в других - оно есть. Возникают два вопроса:
1. вроде бы я считал не в системе центра инерции, но у меня излучение отсутствует - Алексеев ошибается? или я ошибаюсь?
2. переходом из системы в систему можно исключить излучение?

Там ещё в задачнике есть аналогичная задача с атомом Резерфорда. С ней пока разбираться не хочется: движение электрона немного сложнее, но суть та же.

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение22.10.2017, 20:33 
Заслуженный участник
Аватара пользователя


04/09/14
5257
ФТИ им. Иоффе СПб
Metford в сообщении #1258062 писал(а):
$$m\vec{w}=-e\frac{\vec{r}}{R^3}\Rightarrow \vec{w}=-\frac{e}{mR^3}\vec{r},\;\dot{\vec{w}}=-\frac{e}{mR^3}\vec{v}.$$
То, что в глаза бросилось. Поле внутри вроде как линейно по радиусу.

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение22.10.2017, 20:37 
Заслуженный участник
Аватара пользователя


06/04/13
1916
Москва
amon
Применяю теорему Гаусса для сферы радиусом $r<R$:
$$4\pi r^2\cdot E=4\pi\cdot\frac{e}{\frac{4}{3}\pi R^3}\frac{4}{3}\pi r^3\Rightarrow E=e\frac{r}{R^3}.$$
Поле направлено радиально, поэтому
$$\vec{E}=e\frac{\vec{r}}{R^3}.$$
Вроде всё так.

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение22.10.2017, 20:44 
Заслуженный участник
Аватара пользователя


04/09/14
5257
ФТИ им. Иоффе СПб
Виноват, посмотрел второпях и показалось, что у вас $1/r^2$. Будет время - посмотрю внимательно. У Вас ещё неявно предполагается, что шар неподвижен (имеет бесконечную массу), но это тоже второпях.

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение22.10.2017, 20:47 
Заслуженный участник
Аватара пользователя


06/04/13
1916
Москва
amon в сообщении #1258082 писал(а):
У Вас ещё неявно предполагается, что шар неподвижен (имеет бесконечную массу)

Это не у меня, это у Алексеева... В условии, где определяется, что такое атом Томсона, сказано, что шар неподвижен.
amon в сообщении #1258082 писал(а):
Будет время - посмотрю внимательно.

Буду признателен!

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение23.10.2017, 01:34 
Заслуженный участник
Аватара пользователя


04/09/14
5257
ФТИ им. Иоффе СПб
IMHO, Вы как раз в СЦМ всё и сосчитали, поскольку радиус отсчитывали от центра шара, а он бесконечно тяжелый (иначе болтался бы при движении электрона, и эту болтанку пришлось бы учитывать). Что тут еще можно считать за центр масс я не знаю.

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение23.10.2017, 01:38 
Заслуженный участник
Аватара пользователя


06/04/13
1916
Москва
amon в сообщении #1258165 писал(а):
Что тут еще можно считать за центр масс я не знаю.

Да. Вы правы. Я отвлёкся от самого шара: заряд и всё. А его нужно бесконечно тяжёлым считать.

Хорошо. А насчёт второго вопроса: получается, что излучение можно исключить переходом в другую систему отсчёта?

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение23.10.2017, 01:51 
Заслуженный участник
Аватара пользователя


04/09/14
5257
ФТИ им. Иоффе СПб
А этого я не понимаю, также как и Вы. Просто сдвиг начала отсчёта координат ничего, естественно, не даст, это просто замена переменных в Ваших уравнениях. Может, имелось ввиду то, что при конечной массе "протона" надо учитывать его движение, что даст дополнительный магнитный момент, может ещё что - загадочная фраза.

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение23.10.2017, 09:56 
Заслуженный участник
Аватара пользователя


06/04/13
1916
Москва
amon
Спасибо за помощь! В общем, я думаю, что больше уже сделанного делать и не нужно.

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение23.10.2017, 12:15 
Заслуженный участник


29/11/11
4390
Если $\vec{a} = k\vec{r}$ то естественно $\vec{r}\times\vec{v} = \operatorname{const}$

Но почему вы берете $\vec{a} = k\vec{r}$? Вы излучение в центре шара что-ли ищете? В центре шара, как и вообще на оси движения электрона, оно действительно нулевое.

Вот если вы разложите $\vec{r}$ из точки где ищете излучение до электрона на вектор из нее в центр шара $\vec{r_0}$ и вектор из центра до электрона $\vec{a} = k(\vec{r} - \vec{r_0})$ то будет уже другая история. $(\vec{r}\times\vec{v})' = - k\vec{r}\times\vec{r_0}$

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение23.10.2017, 13:31 
Заслуженный участник
Аватара пользователя


06/04/13
1916
Москва
rustot в сообщении #1258237 писал(а):
Вы излучение в центре шара что-ли ищете?

Нет, почему Вы решили? В формулу интенсивности магнитно-дипольного излучения (а это вовсе не вблизи центра шара!) входит магнитный момент того, что излучает. Вот я и ищу магнитный момент, а затем его вторую производную. Откровенно говоря, вообще не понял Ваше сообщение...

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение23.10.2017, 14:17 
Заслуженный участник


29/11/11
4390
Для одиночного движущегося заряда магнитный момент не является "моментом вообще" как допустим для контура, не имеющего электрического момента. Его величина зависит от точки, относительно которой он рассчитывается. Например возьмете относительно точки, которая лежит на оси движения - он получится нулевым.

И если вам хочется рассчитать излучение именно через магнитный момент, то рассчитывать момент придется относительно той точки, для которой считается излучение, а не располагать начало координат там, где удобнее.

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение24.10.2017, 22:00 
Заслуженный участник
Аватара пользователя


06/04/13
1916
Москва
rustot
Я повспоминал на досуге и как-то не припомнил книгу, где бы рассматривалось введение магнитного момента для одиночного движущегося заряда. Вы не подскажете, где это есть? Был бы признателен. Обычно либо рассматривается поле вдали от системы зарядов или момент контура с током

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение24.10.2017, 22:17 
Заслуженный участник


29/11/11
4390
Так вы же сами его использовали после фразы "магнитный момент по определению". $q(\vec{r}\times\vec{v})$ есть не что иное как частный случай от $\int (\vec{r}\times\vec{j}) dV$ как раз для точечного заряда

Тут история абсолютно такая же как с моментом импульса. В общем случае момент импульса системы разный относительно разных точек. Но в одном частном случае $\int \rho \vec{v} dV = 0$ ("система покоится") он одинаков относительно всех точек что позволяет рассчитав его относительно наиболее удобной точки потом использовать относительно любой.

С магнитным моментом то же самое, если $\int \vec{j} dV = 0$ то можно рассчитать магнитный момент не относительно той точки для которой он требуется, а относительно той что удобнее, результат будет все равно тот же самый. Но это не ваш случай, у вас $\int \vec{j} dV = q\vec{v} \ne 0$ и вам придется рассчитывать момент отдельно для каждой точки, в которой вы ищете излучение, а не использовать единый универсальный

 Профиль  
                  
 
 Re: Атом Томсона и магнитно-дипольное излучение
Сообщение24.10.2017, 22:21 
Заслуженный участник
Аватара пользователя


06/04/13
1916
Москва
Да, я неточно сформулировал вопрос. Меня скорее интересовало не само вычисление магнитного момента, а его использование уже в расчёте излучения. Скажем, у того же Ландау внимание не заостряется на этом вопросе. Странновато как-то получается, что интенсивность излучения будет через магнитный момент зависеть от того, где выбрано начало координат.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 24 ]  На страницу 1, 2  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
cron
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group