I have done exhaustive searches up to N = 11 for minimum and maximum
The minimum results follow. I have listed the solutions where the #ofconfigs differs from yae9911 list 3 1.5 # 1 4 1.0 # 1 5 1.5 # 2 (1,1), (2,2), (4,5), (3,3), (5,4), (1,2), (3,3), (4,4), (2,1), (5,5),
6 4.0 # 2 7 4.5 # 3 8 3.5 # 4 9 4.5 # 1
10 4.0 # 3 (1,3), (5,6), (8,8), (6,5), (3,1), (10,7), (4,2), (9,9), (2,4), (7,10), (1,3), (5,6), (8,8), (3,1), (10,7), (4,2), (6,5), (9,9), (2,4), (7,10), (1,3), (8,8), (3,1), (10,7), (4,2), (6,5), (9,9), (5,6), (2,4), (7,10),
11 5.5 # 2 (1,1), (3,4), (7,11), (2,2), (10,9), (6,6), (4,5), (11,10), (5,3), (9,8), (8,7), (1,2), (5,8), (2,3), (9,11), (3,4), (6,6), (11,10), (4,1), (7,5), (8,7), (10,9),
The above results just confirm TomSirgedas minimums Processing Tom's minimums upto 20 to remove symmetries the #ofconfigs are 12 6.0 # 12 13 6.0 # 6 14 6.5 # 5 15 7.0 # 11 16 7.0 # 4 17 7.5 # 11 18 8.0 # 19 19 8.5 # 17 20 9.0 # 55
The maximum results are 3 1.5 # 1 4 4.0 # 1 5 9.0 # 1 6 14.0 # 2 7 22.0 # 1 8 32.5 # 1 9 44.0 # 2 (1,2), (2,7), (4,6), (5,4), (6,3), (3,8), (8,9), (9,5), (7,1), (1,2), (2,8), (5,4), (4,6), (6,5), (3,7), (8,9), (9,3), (7,1),
10 59.0 # 3 11 75.5 # 5 (1,1), (2,9), (4,8), (8,3), (7,5), (6,6), (9,4), (5,7), (3,10), (10,11), (11,2), (1,1), (2,9), (5,7), (8,3), (6,6), (7,5), (9,4), (4,8), (3,10), (10,11), (11,2), (1,2), (2,9), (4,8), (8,3), (7,5), (6,6), (9,4), (5,7), (3,10), (10,11), (11,1), (1,2), (2,9), (5,7), (6,6), (8,3), (7,5), (9,4), (4,8), (3,11), (11,10), (10,1), (1,3), (4,4), (8,9), (7,7), (6,6), (9,8), (5,5), (3,2), (10,1), (11,10), (2,11),
I am running 12 for minimums and maximums. I am sure the minimum will just confirm Tom's results I expect to have results in about three weeks.
|