С одной стороны нечто называют результатом, с другой же — говорят, что никаким доказательством это не пахнет.
Перебор объектов, если он закончился предъявлением конкретного объекта, является конструктивным доказательством.
В математике есть
несколько конструктивных направлений, которые
отличаются пониманием конструктивности. Не всякое математическое доказательство является конструктивным в смысле какого-либо этих направлений. Не нужно рассматривать это обстоятельство как повод для заявлений типа "это не доказательство, потому что оно не конструктивно". В конструктивной математике это не доказательство, а в классической — вполне себе доказательство.