Идея в общем виде простая. Решением возвратного уравнения
является сумма
синусоид (со сдвигом по фазе и, вообще говоря, затухающих или нарастающих по экспоненту). Оценив его параметры, можем решить вспомогательное уравнение
, комплексные корни которого дадут нам частоты (как аргумент комплексных корней) и декременты затухания (логарифмы амплитуд).
Разные алгоритмы оценки (авторегрессия, через собственные значения и т.п.) дают разные методы оценки частот (подробнее, например, Марпл-мл., "Цифровой спектральный анализ" и другие книги). Достоинство и недостаток такого подхода состоят в том, что число пиков спектра у нас априори задано порядком модели. Это вносит элемент произвола, но позволяет получить параметры отдельных пиков точнее, чем через БПФ и тому подобное.
В частном случае Вашей задачи затухание отсутствует.
Пусть
Тогда можно найти
и
Что очевидным образом позволяет найти
После этого можно построить
и
, затем регрессию y на
, откуда придти к амплитуде и фазе (или предпочесть оставить коэффициенты при косинусе и синусе, как удобнее).