Это понятно без всяких доказательств
То, что что-то понятно, не означает, что это нельзя доказать.
некое формальное утверждение, имеющее при его (неформальной) интерпретации содержательный смысл непротиворечивости арифметики Пеано можно доказать в некой другой формальной теории. То есть он указал на некоторую связь между двумя формальными теориями.
Не вижу никакого отличия (но это не значит, что его нет) между этой длинной сентенцией и более короткой "доказал непротиворечивость арифметики Пеано". Любая теорема — это, в конечном счёте, некоторое формальное утверждение, и любое утверждение о непротиворечивости некоторой теории — это утверждение о наличии связи между этой теорией и метатеорией, в которой производится доказательство, так ведь?
-- 24.03.2017, 23:37 --(Оффтоп)
george66, кстати, спасибо, всё-таки, за ссылку на FOM. Там действительно есть что почитать. Например, интересный вопрос, фатальна ли противоречивость для теории. Оказывается, нет, и с противоречивыми теориями можно содержательно работать! (потому что противоречивость, вообще говоря, не означает, что для любой теоремы доказуемо её отрицание)