2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Пределы
Сообщение15.03.2017, 14:19 


03/04/14
303
Otta в сообщении #1196189 писал(а):
Можем. А вот если второй предел равен $-\infty$ - ничего не можем. И вообще бесконечные пределы - это совершенно особая категория, стандартные теоремы посвящены (как правило) конечным. Тут все очень зависит от автора учебника, но вот, скажем, в курсе анализа, который читали мне в свое время, слова "существует предел" говорились только про конечный предел. Поскольку по определению, " предел функции (последовательности) - это число, такое что....". Ну и многие еще коллизии в этом месте возникают, если разрешить бесконечному пределу те же права. Так что нет, бесконечные пределы удобны как класс, не зря же их выделили отдельно, работать с ними можно, но теоремы для них свои.


А все таки, какая польза от того, что мы можем записать некоторый, например, предел суммы как сумму пределов? В смысле при подсчете пределов. Или это просто для того, чтобы мы знали что, например, $+\infty$ нельзя сложить с $-\infty$?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 16 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: B@R5uk


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group