2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.

Часто ли авторы действительно ошибаются или пишут неоднозначно
Бывает, периодически 0%  0%  [ 0 ]
Такого почти не бывает 0%  0%  [ 0 ]
Не заостряю внимание и не разбираюсь когда не понимаю 0%  0%  [ 0 ]
Всего голосов : 0
 
 Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 08:20 
Аватара пользователя
Читаю теоретическую статью из раздела школьной математики и вижу следующее:
Цитата:
Образно говоря, наша последовательность «втекает» в точку 0. Понятие предела как раз и
отражает факт этого «втекания».

...

Подчеркнём, что «втекание последовательности в точку $a» означает, что вблизи числа $a
находятся все члены данной последовательности, начиная с некоторого номера. Более точно,
смысл выражения «предел последовательности $a_n равен $a» таков: какое бы расстояние ε мы
наперёд ни задали, все числа $a_n, начиная с некоторого номера, будут находиться от числа $a на
расстоянии меньше ε.

Источник.

Когда я посмотрел на то, что написано жирным шрифтом в первый раз - мне показалось, что в этом нет никакого смысла.
Я до сих пор не уверен, что у данного выражения есть смысл, поскольку с математикой знаком весьма поверхностно.

p.s. Пока-что, я, делая ставку, что автор лишнего не скажет, предполагаю, что в контексте статьи, $a и $a_n могут быть между собой и не связаны, так же как если бы автор написал вместо этого $b и $a_n

Вопрос: Имеет ли математический смысл данное выражение? Можно ли назвать данное выражение неоднозначным и обвинить автора в некорректности изложения?

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 08:30 
Аватара пользователя
h37kkx32 в сообщении #1199011 писал(а):
Имеет ли математический смысл данное выражение?

Встречный вопрос: ЧТО именно смущает в выражении
h37kkx32 в сообщении #1199011 писал(а):
предел последовательности $a_n$ равен $a$

:?:

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 08:48 
Строго говоря, действительно так обозначать не следует. $a$ — это последовательность, а $a_n$ — её $n$-й элемент. Часто всю последовательность целиком обозначают $a_n$, где $n$ — немая переменная, но это не очень хорошо.

-- Сб мар 11, 2017 10:49:36 --

Можно считать, что это разные буквы $a$. Но это хождение по краю.

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 09:14 
Аватара пользователя
arseniiv в сообщении #1199015 писал(а):
Можно считать, что это разные буквы $a$.

Я тоже к этому склоняюсь.
Dan B-Yallay в сообщении #1199013 писал(а):
h37kkx32 в сообщении #1199011 писал(а):
Имеет ли математический смысл данное выражение?

Встречный вопрос: ЧТО именно смущает в выражении
h37kkx32 в сообщении #1199011 писал(а):
предел последовательности $a_n$ равен $a$

:?:

Смущает то, что автор, на мой взгляд, заявляет, что предел последовательности равен последовательности.
Предел последовательности - это число.
Последовательность - это набор чисел.

Хорошо, если он не имеет ввиду, что $a$ в жирном шрифте - это буква, обозначающая последовательность.
Тогда все становится на свои места. Но осадочек остается, т.к. чтобы прочесть текст с пониманием, приходится задействовать эту лишнюю цепочку рассуждений.

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 09:17 
Аватара пользователя

(Оффтоп)

Я им говорю - не ложте

arseniiv в сообщении #1199015 писал(а):
Строго говоря, действительно так обозначать не следует

Строго говоря, не следует говорить функция $f(x)$, но ведь говорим, а уж про последовательность, чтобы кто-то сказал
arseniiv в сообщении #1199015 писал(а):
$a$ — это последовательность

кажется нигде не видел.

-- Сб мар 11, 2017 12:20:42 --

h37kkx32 в сообщении #1199020 писал(а):
Последовательность - это набор чисел.

Отнюдь - это функция натурального аргумента.
Набор обычно конечное множество чаще упорядоченное.

(Оффтоп)

Как правильно писать - ложте или ложьте? :D

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 09:57 
arseniiv в сообщении #1199015 писал(а):
$a$ — это последовательность, а $a_n$ — её $n$-й элемент

Вот как раз так не пишет ровно никто. И "источник" ни разу не обозначает последовательность просто буквой $a$. Почему так почудилось ТС -- загадка.

Строго говоря, последовательность следовало бы обозначать $\{a_n\}$ (сокращение от $\{a_n\}_{n=1}^{\infty}$ или $\{a_n\colon n\in\mathbb N\}$). Однако для краткости все эти бантики часто опускают и пишут просто $a_n$. Тем более автор, который с самого начала предупреждает, что не собирается гнаться за "технической строгостью". (Правда, с небрежностью изложения он, на мой взгляд, несколько перебарщивает, но это уже другой вопрос.)

(Оффтоп)

bot в сообщении #1199021 писал(а):
Как правильно писать - ложте или ложьте? :D

Покладайте.

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 10:11 
Аватара пользователя
h37kkx32 в сообщении #1199011 писал(а):
p.s. Пока-что, я, делая ставку, что автор лишнего не скажет, предполагаю, что в контексте статьи, $a и $a_n могут быть между собой и не связаны, так же как если бы автор написал вместо этого $b и $a_n

Как это "не связаны"? В тексте недвусмысленно написано, что $a$ - предел последовательности $a_n$ , так что они связаны отношением "последовательность и ее предел".

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 10:20 
Аватара пользователя
ewert в сообщении #1199029 писал(а):
arseniiv в сообщении #1199015 писал(а):
$a$ — это последовательность, а $a_n$ — её $n$-й элемент

Вот как раз так не пишет ровно никто. И "источник" ни разу не обозначает последовательность просто буквой $a$. Почему так почудилось ТС -- загадка.

Чтобы не было загадки, отвечу:
Я, оказывается, не внимательно изучил картинку в поисковом запросе.
И запомнил только то, что элемент последовательности - это $a_n$.
Не обратил внимание, что последовательность - это ($a_n$)
В следствии чего и сделал у себя в голове ошибочный вывод,
что раз $a_n$ - это член последовательности, то наверное $a$ это и есть последовательность.

В любом случае, было интересно с этим разобраться, спасибо активным участникам.

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 10:28 
По исходному вопросу ТС. Гораздо чаще (на порядки) ошибаются не авторы а ленивые и/или самоуверенные читатели. Вот тут как раз такой случай)
А пишущим в теме советую обратить внимание на фразу
h37kkx32 в сообщении #1199011 писал(а):
Я ... не уверен ... поскольку с математикой знаком весьма поверхностно.

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 11:17 
ewert в сообщении #1199029 писал(а):
Строго говоря, последовательность следовало бы обозначать $\{a_n\}$ (сокращение от $\{a_n\}_{n=1}^{\infty}$ или $\{a_n\colon n\in\mathbb N\}$).
Ну это уже множество значений последовательности получается, а не последовательность.

Не понимаю, с чего защищать очевидный ляп автора. Не важно, говорят ли «$a$ — последовательность», обозначение настолько разных вещей одной буквой всё равно не замечательно. Я понимаю, например, когда алгебраическую структуру и её носитель обозначают одной буквой, но тут ситуация не аналогична. Букв море, и если хочется $a$, то можно было взять $A, a', \mathrm a,\underline{a}$ etc..

-- Сб мар 11, 2017 13:18:15 --

Вообще, конечно, читать математические тексты тоже надо уметь. Как надо уметь их и грамотно составлять, уменьшая неоднозначность до разумного уровня. И во вводных текстах этот уровень куда строже.

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 11:29 
Аватара пользователя
arseniiv в сообщении #1199040 писал(а):
Ну это уже множество значений последовательности получается, а не последовательность.
Думаю, Вы просто незнакомы с общепринятой нотацией (одной из -- самой распространённой).
arseniiv в сообщении #1199040 писал(а):
обозначение настолько разных вещей одной буквой всё равно не замечательно.
Никак не могу понять, о чём Вы. Можете привести конкретные ссылки на текст?

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 11:33 
grizzly в сообщении #1199049 писал(а):
Думаю, Вы просто незнакомы с общепринятой нотацией (одной из -- самой распространённой).
Я знаком и сам какое-то время так писал, но это уж слишком двусмысленно, если начать опускать слова «последовательность/множество». Вот круглые скобки вместо фигурных уже намного лучше.

grizzly в сообщении #1199049 писал(а):
Никак не могу понять, о чём Вы. Можете привести конкретные ссылки на текст?
Я руководствуюсь только цитатой, приведённой здесь, что «последовательность $a_n$ имеет предел $a$», а сам оригинал не читал. Даже если мы собираемся последовательности обозначать только $(x_n)$, это всё ещё не айс.

-- Сб мар 11, 2017 13:35:25 --

Вообще, я выразил своё мнение и аргументировал его настолько, насколько считаю нужным. Мне немного странна текущая ситуация, но что ж поделать. Остаётся небольшая вероятность, что обсуждение начато с умыслом создать тему с флеймом на десять страниц, в чём я участвовать не собираюсь. Да и обсуждения о том, как обозначать и как не обозначать функции и последовательности, тоже уже были.

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 11:46 
Дело в том, что в словах

h37kkx32 в сообщении #1199033 писал(а):
раз $a_n$ - это член последовательности, то наверное $a$ это и есть последовательность

есть своя логика. Ровно так обычно и пишут в случае конечномерных векторов, и далеко не всегда при этом выделяют сами векторы каким-нибудь болдом. А последовательности, в конце концов -- тоже векторы. Только обозначения для них общеприняты другие.

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 12:01 
Аватара пользователя
arseniiv в сообщении #1199052 писал(а):
Я.. сам оригинал не читал.
но осуждаю! :D А вы - почитайте. В оригинале чОтко написано, что и члены последовательности, и ее предел $a$ - числа, и никаких двусмысленностей не возникает.
Никто оригинал не читал, но уже страницу предположений и осуждений нагородили. Что за народ?

 
 
 
 Re: Трактовка текста из статьи. Последовательности.
Сообщение11.03.2017, 12:39 
Аватара пользователя
Brukvalub в сообщении #1199060 писал(а):
arseniiv в сообщении #1199052 писал(а):
Я.. сам оригинал не читал.
но осуждаю! :D А вы - почитайте. В оригинале чОтко написано, что и члены последовательности, и ее предел $a$ - числа, и никаких двусмысленностей не возникает.
Никто оригинал не читал, но уже страницу предположений и осуждений нагородили. Что за народ?

То, что члены последовательности и ее предел - это числа - это и так было очевидно, и из этого не следует никаких выводов, решающих вопросы этого топика, имхо.
Точнее, следует, но я, по моему, выше уже написал об этом.

arseniiv в сообщении #1199040 писал(а):
Не важно, говорят ли «$a$ — последовательность», обозначение настолько разных вещей одной буквой всё равно не замечательно.

Согласен.

 
 
 [ Сообщений: 16 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group