2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В раздел Пургаторий будут перемещены спорные темы (преимущественно псевдонаучного характера), относительно которых администрация приняла решение о нецелесообразности продолжения дискуссии.
Причинами такого решения могут быть, в частности: безграмотность, бессодержательность или псевдонаучный характер темы, нарушение автором принципов ведения дискуссии, принятых на форуме.
Права на добавление сообщений имеют только Модераторы и Заслуженные участники форума.



Начать новую тему Ответить на тему На страницу 1, 2, 3  След.
 
 Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 02:27 
Аватара пользователя


05/12/16
14
$F=G\frac{m_{\circ}\cdot m_{\odot}}{D^2}\cdot(1+\frac{2Gm_{\circ }\cdot D}{c^2R_{\circ}^{2}})\cdot(1+\frac{2Gm_{\odot}\cdot D}{c^2R_{\odot}^{2}})=G\frac{m_{\circ}\cdot m_{\odot}}{D^2}\cdot(1+\frac{r_{g\circ}\cdot D}{R_{\circ}^{2}})\cdot(1+\frac{r_{g\odot}\cdot D}{R_{\odot}^{2}})$

1. ЗВТ можно записать в геометрических единицах массы, подставив в него выражение масс взаимодействующих тел через их гравитационные радиусы.

$r_{g}=\frac{2Gm}{c^2}; F =\frac{c^4}{4G}\cdot \frac{r_{g\circ}\cdot r_{g\odot}}{D^2}$;

Здесь $\frac{r_{g\circ}}{D}$ и $\frac{r_{g\odot}}{D}$ - угловые размеры гравитационных радиусов тел.

2. Массивные небесные тела являются гравитационными линзами (Г.Л.), и вызывают девиацию геодезических линий. Угол отклонения луча света (девиации геодезических линий) в поле тяготения Г.Л. рассчитывается в ОТО:

$\theta=\frac{2r_{g}}{R_{\odot}}$

Половина данного отклонения приходится на участок между наблюдателем и Г.Л. (на траверзе Г.Л. траектории лучей параллельны), в результате возникает эффект самолинзирования Г.Л.

Имеется ряд публикаций, посвященных самолинзированию (self-lensing, или selflensing), где данный феномен рассматривается, исключительно, как эффект геометрической оптики (LMC, Betelgeuse, etc. ). Однако, на наш взгляд, следует различать эффекты преломления электромагнитных волн (по-разному, в зависимости от частоты) и девиации геодезических линий, имеющей характер универсального проекционного преобразования. Последние не связаны с геометрической оптикой, и вызывают актуальное изменение наблюдаемых угловых размеров небесных тел, в том числе, их гравитационных радиусов.

$\Delta\varphi_0= \theta/2=\frac{r_{g}}{R_{\odot}}$

При этом, наблюдаемый угловой размер гравитационных радиусов увеличивается. что соответствует видимому актуальному увеличению гравитационной массы тела.

Приведенные рассуждения позволяют ввести понятие наблюдаемой гравитационной массы, обусловленной эффектом самолинзирования Г.Л. (независимо от ее размера).

Коэффициент увеличения наблюдаемой гравитационной массы K можно рассчитать, как отношение малых углов наблюдаемого (самолинзированного) углового размера небесного тела
$\psi+\Delta\varphi_0$ к истинному угловому размеру тела $\psi$, где истинный угловой размер $\psi=\frac{R_{\odot}}{D}$

$K=\frac{\psi+\Delta\varphi_0}{\psi} = 1+\frac{r_{g}\cdot D}{R_{\odot}^{2}}$

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 02:42 
Заслуженный участник


09/05/12
25179
А в чем, собственно, состоит идея?

Кроме этого, хотелось бы понять, каков смысл первой формулы (кроме тренировки в наборе формул) и зачем Вы отдельные величины обозначаете индексом $\odot$.

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 03:35 
Аватара пользователя


05/12/16
14
Pphantom в сообщении #1174240 писал(а):
А в чем, собственно, состоит идея?

Кроме этого, хотелось бы понять, каков смысл первой формулы (кроме тренировки в наборе формул) и зачем Вы отдельные величины обозначаете индексом $\odot$.


Предлагаемая идея "видимой гравитационной массы" - это только часть разрабатываемой модели. На мой взгляд, такая концепция позволит (в том числе) предложить альтернативное объяснение кривым вращения галактик. 1. Из соотношений величин понятно, что непосредственно работать данная зависимость будет только на космологически больших расстояниях. Это, как раз, уместно при анализе кривых вращения галактик. 2. Компактные тела получают дополнительное видимое увеличение гравитационной массы по сравнению с менее плотными, что, например, можно рассматривать в эволюционных моделях локализации транснептуновых объектов Солнечной системы. 3. Имеются далеко идущие космологические следствия, "удлинения" действия гравитации.

ЗВТ приведен для демонстрации геометрического характера величин в нем участвующих (угловых размеров гравитационных радиусов тел), и обращения внимания на эффект самолинзирования, при котором любые геометрические параметры тел испытывают увеличение. Сила тяготения между телами определяется видимыми угловыми размерами их гравитационных радиусов.

Обозначения $m_{\odot}$ и $m_{\circ}$ остались исторически, после рассмотрения некоторых ситуаций в солнечной системе. Можно использовать любые другие, сохраняя соответствие индексов. К тому же, в ЗВТ расстояние традиционно обозначается через R, и его пришлось заменить на D, т.к. в формуле итак уже присутствуют два радиуса, а $R\odot$ с чем-либо сложно перепутать.

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 09:38 
Заслуженный участник


09/05/12
25179
IvanKrasnyj в сообщении #1174241 писал(а):
На мой взгляд, такая концепция позволит (в том числе) предложить альтернативное объяснение кривым вращения галактик.
В таком случае было бы недурно увидеть количественную оценку величины эффекта.
IvanKrasnyj в сообщении #1174241 писал(а):
1. Из соотношений величин понятно, что непосредственно работать данная зависимость будет только на космологически больших расстояниях. Это, как раз, уместно при анализе кривых вращения галактик.
Либо Вы неправильно употребляете словосочетание "космологически большие расстояния", либо для кривых вращения галактик это не пригодится. Для получения кривых вращения нужны спектроскопические данные для разных точек галактики или, на худой конец, хорошие профили спектральных линий, а это означает, что галактика должна быть достаточно яркой (т.е. достаточно близкой).
IvanKrasnyj в сообщении #1174241 писал(а):
2. Компактные тела получают дополнительное видимое увеличение гравитационной массы по сравнению с менее плотными, что, например, можно рассматривать в эволюционных моделях локализации транснептуновых объектов Солнечной системы.
Опять-таки хотелось бы увидеть количественную оценку величины эффекта.
IvanKrasnyj в сообщении #1174241 писал(а):
Обозначения $m_{\odot}$ и $m_{\circ}$ остались исторически, после рассмотрения некоторых ситуаций в солнечной системе.
В таком случае было бы нелишне эти обозначения расшифровать. Если под тем же $R\odot$ Вы не подразумеваете радиус Солнца, то стоит указывать, что это.

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 12:23 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Я так понимаю, вся идея основывается на вот этой ошибке:
    IvanKrasnyj в сообщении #1174239 писал(а):
    Однако, на наш взгляд, следует различать эффекты преломления электромагнитных волн (по-разному, в зависимости от частоты) и девиации геодезических линий, имеющей характер универсального проекционного преобразования. Последние не связаны с геометрической оптикой, и вызывают актуальное изменение наблюдаемых угловых размеров небесных тел, в том числе, их гравитационных радиусов.
    $\Delta\varphi_0= \theta/2=\frac{r_{g}}{R_{\odot}}$
    При этом, наблюдаемый угловой размер гравитационных радиусов увеличивается. что соответствует видимому актуальному увеличению гравитационной массы тела.
То есть, автор полагает, что "гравитационный радиус" - это нечто типа реального расстояния в пространстве-времени, наблюдаемого, как и другие геометрические расстояния. И даёт к нему поправку, и заявляет, что условия наблюдения влияют на этот самый гравитационный радиус.

На самом деле, гравитационный радиус - это негеометрическая величина. Это просто переобозначение для $2GM/c^2.$ (То есть, грубо говоря, для массы.) Если это вспомнить, то станет ясно, что масса тела не поменяется от наблюдений. Если мы рассматриваем Юпитер через линзу, он не начинает притягивать свои спутники сильнее.

Хотя гравитационное линзирование и относится ко всем видам геодезических линий (светоподобных), но таких геодезических в природе немного, и как раз удобнее всего рассматривать их по аналогии с оптикой. Также в астрономии аналогичному линзированию из наблюдаемых явлений могут подвергнуться нейтрино и гравитационные волны. И те и другие - в смысле "оптического" искажения тех "изображений", которые были обрисованы ими за линзой.

Понятие "наблюдаемая величина" требует осторожного обращения, поскольку надо держать в голове: кем и как наблюдаемая. В физике про "наблюдаемые" обычно говорят в локальном смысле: величина электрического поля $\vec{E}$ наблюдаема в данной точке $(x,y,z),$ поскольку мы можем поместить в эту точку пробный заряд, и посмотреть на действующую на него силу. Это соответствует эксперименту в физической лаборатории. Но в астрономии все тела, явления и события имеют место где-то далеко, а наблюдения мы производим на Земле, телескопами и другими приборами. И подразумевается, что информация о событиях донесена до нас светом или чем-то аналогичным. И понятие "наблюдаемой величины" включает в себя поправки на искажения света или других носителей, которые произошли с ним по дороге.

Если подумать, то станет ясно, что одни и те же гравитирующие тела могут наблюдаться разными наблюдателями на разных планетах со всех сторон и с разных расстояний. Для них эффекты гравитационного линзирования (включая самолинзирование) будут разными. Но физическая реальность-то одинакова! Гравитирующее тело будет притягивать другое тело как-то само по себе, независимо от того, кто и как его наблюдает (и даже если его никто не наблюдает). Оно не будет притягивать другое тело тысячами разных сил, по числу разных наблюдателей.

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 14:17 
Заслуженный участник
Аватара пользователя


01/09/13
4656
Если раскрыть скобки, получится слагаемое, независящее от расстояния между телами, а только, внезапно, от их "плотности". В частности, любые две НЗ во вселенной притягиваются с силой как если бы они были на расстоянии порядка 10 км друг от друга...

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 15:19 
Аватара пользователя


05/12/16
14
- Количественная оценка по п. 1 и 2 займет некоторое время, которое большей частью будет потрачено на поиск необходимых и представительных исходных данных. Что именно, и в каком объеме рекомендуете рассчитать?

Также, стоит отметить, что для конкретного небесного тела $K=\frac{r_{g\circ}}{R_{\circ}^{2}}=\operatorname{const}$ Однако, у газового гиганта, например, внутри может оказаться очень компактное ядро, и тогда коэффициент увеличения видимой гравитационной массы окажется существенно большим. Поэтому в общем случае следует полагать $K=\frac{r_{g\circ}(R)}{R_{\circ}^{2}}=\operatorname{const}$

Pphantom в сообщении #1174251 писал(а):
Либо Вы неправильно употребляете словосочетание "космологически большие расстояния"...
- Скорее так. Я несколько шире применяю этот термин, поскольку рассматриваю альтернативную космологическую модель, в которой отдельные эффекты, обусловленные космологией, могут проявляться уже на окраине Солнечной системы.

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 15:54 


05/09/16
12061
То есть, если бы горизонт событий какой-то черной дыры светился (мы бы могли видеть например излучение Хокинга), а мы бы знали параметры (расстояние до черной дыры, ее массу) то наблюдаемый нами угловой размер такого светящегося объекта не совпал бы с расчетным и при наблюдении оказался бы бОльшим расчетного в К раз?

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 17:30 
Аватара пользователя


05/12/16
14
Munin в сообщении #1174260 писал(а):
...На самом деле, гравитационный радиус - это негеометрическая величина. Это просто переобозначение для $2GM/c^2.$ (То есть, грубо говоря, для массы.) Если это вспомнить, то станет ясно, что масса тела не поменяется от наблюдений. Если мы рассматриваем Юпитер через линзу, он не начинает притягивать свои спутники сильнее.


Однако, выражение $2GM/c^2.$ имеет размерность длины, и приписывать ему свойства массы неуместно.

Munin в сообщении #1174260 писал(а):
...Если мы рассматриваем Юпитер через линзу,...
- через гравитационную линзу... Я и не утверждаю, что изменяется собственная гравитационная масса, изменяется видимая гравитационная масса Юпитера. Для каждого наблюдателя (спутника Юпитера) она своя.
Munin в сообщении #1174260 писал(а):
Но физическая реальность-то одинакова! Гравитирующее тело будет притягивать другое тело как-то само по себе, независимо от того, кто и как его наблюдает (и даже если его никто не наблюдает). Оно не будет притягивать другое тело тысячами разных сил, по числу разных наблюдателей.

На самом деле, если придерживаться упрощенной современниками формулировки ЗВТ (Ньютон был осторожнее в формулировке ЗВТ), то Вы правы, в том смысле, что вселенная большая, и собственная масса отдельного объекта не может быть многоликой для разных наблюдателей... Хотя даже в классической формулировке вопрос, "Откуда каждое тело "знает" о массах других тел?" остается открытым...

Я отметил в первом сообщении, что рассматриваемая идея, это только часть модели. Как видно, одно тянет другое, и придется пояснять, каким образом это возможно.

В альтернативной космологической модели второе небесное тело не является субъектом притяжения, оно скорее, выполняет роль экрана. (В каждом муравейнике своя тень от дерева :) ) В отсутствии других тел в ближнем окружении каждое небесное тело испытывает "отталкивание" (поясню позже) со стороны небесной сферы. Это отталкивание пропорционально собственной массе первого тела и изотропно направлено по всей небесной сфере (скомпенсировано).

Второе гравитирующее тело в месте своего нахождения вносит возмущения в изотропное отталкивание небесной сферой первого тела пропорционально собственной массе (экранирует обзор небесной сферы). В результате, с учетом взаимного эффекта, на каждое из тел, со стороны небесной сферы в направлении другого тела действует нескомпенсированный вектор силы тяготения, пропорциональный массам обоих тел.

Про альтернативную космологическую модель, в которой каждая изолированная масса изотропно отталкивается небесной сферой нужно рассказывать отдельно, если это представляет интерес для искушенной аудитории. Основной механизм гравитации, заложенный в эту модель - фундаментальное свойство материи занимать свободное пространство, реализованное в замкнутой стационарной вселенной. Отдельные моменты обсуждались в теме Гравитационное линзирование силы гравитации на http://www.astronomy.ru/forum/

-- 05.12.2016, 17:43 --

Geen в сообщении #1174276 писал(а):
Если раскрыть скобки, получится слагаемое, независящее от расстояния между телами, а только, внезапно, от их "плотности". В частности, любые две НЗ во вселенной притягиваются с силой как если бы они были на расстоянии порядка 10 км друг от друга...


В скобках находятся коэффициенты увеличения видимой гравитационной массы. Это числитель дроби. В знаменателе $D^2$ никуда не подевалось... Миссия данной поправки к ЗВТ - поднять хвост кеплеровской кривой до "плато" (неизменных с увеличением дистанции скоростей звезд) на кривых вращения галактик.

Про НЗ в рамках альтернативной космологии - отдельный разговор.

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 18:17 
Аватара пользователя


05/01/13

3968
IvanKrasnyj в сообщении #1174313 писал(а):
Второе гравитирующее тело в месте своего нахождения вносит возмущения в изотропное отталкивание небесной сферой первого тела пропорционально собственной массе (экранирует обзор небесной сферы). В результате, с учетом взаимного эффекта, на каждое из тел, со стороны небесной сферы в направлении другого тела действует нескомпенсированный вектор силы тяготения, пропорциональный массам обоих тел.

Простите, не совсем понял. По-вашему, если спрятать два тела внутрь массивной полой сферы, то притяжение между ними будет отсутствовать?.. Или же будет слабее, чем если бы сферы не было?.. И тогда, наращивая толщину сферы, мы сможем уменьшать притяжение между двумя телами внутри неё?.. :)

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 18:18 
Аватара пользователя


05/12/16
14
wrest в сообщении #1174301 писал(а):
То есть, если бы горизонт событий какой-то черной дыры светился (мы бы могли видеть например излучение Хокинга), а мы бы знали параметры (расстояние до черной дыры, ее массу) то наблюдаемый нами угловой размер такого светящегося объекта не совпал бы с расчетным и при наблюдении оказался бы бОльшим расчетного в К раз?


- Вообще, править ЗВТ - дело неблагодарное... Это ж все массы небесных тел, космологические и эволюционные модели нужно пересчитывать, не только ЧД. :)

Что касается оптических наблюдений, то честно говоря, практически все звезды видно только благодаря эффекту самолинзирования. Эту тему в свое время глубоко копал орловский физик доцент Варгашкин В. Я. На сетевых просторах затерялись следы его работ в альтернативной прессе http://www.pirt.info/files/documents/pr ... T_2003.pdf (forgive his poor english).

http://www.mivlgu.ru/conf/zvor_2012/pdf ... n%2059.pdf

Кое-что он по моей просьбе присылал почтой.

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 18:27 
Аватара пользователя


05/01/13

3968

(Оффтоп)

IvanKrasnyj в сообщении #1174324 писал(а):
Что касается оптических наблюдений, то честно говоря, практически все звезды видно только благодаря эффекту самолинзирования.

А-а, теперь всё понятно. Спасибо за честность.

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 18:39 
Аватара пользователя


05/12/16
14
Denis Russkih в сообщении #1174322 писал(а):
Простите, не совсем понял. По-вашему, если спрятать два тела внутрь массивной полой сферы, то притяжение между ними будет отсутствовать?.. Или же будет слабее, чем если бы сферы не было?.. И тогда, наращивая толщину сферы, мы сможем уменьшать притяжение между двумя телами внутри неё?.. :)


- А сфера Вам зачем? Будет слабее в любой модели. По классике, массивная толстая сфера сама будет притягивать тела, находящиеся внутри, что скомпенсирует их взаимное притяжение.

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 18:51 


05/09/16
12061
IvanKrasnyj в сообщении #1174334 писал(а):
По классике, массивная толстая сфера сама будет притягивать тела, находящиеся внутри, что скомпенсирует их взаимное притяжение.

Так ведь ещё классик Ньютон написал, что внутри сферы хоть бы она была и с толстыми стенками, притяжение к сфере отсутствует...

 Профиль  
                  
 
 Re: Покритикуйте идею видимой (apparent) гравитационной массы
Сообщение05.12.2016, 19:01 
Аватара пользователя


05/01/13

3968
IvanKrasnyj в сообщении #1174334 писал(а):
По классике, массивная толстая сфера сама будет притягивать тела, находящиеся внутри, что скомпенсирует их взаимное притяжение.

А вот и нет, "по классике" сфера вообще никак не будет влиять на объекты внутри неё (в плане гравитационных взаимодействий). Если полая сфера однородна, то разные её точки компенсируют притяжение друг друга, поэтому стенки сферы не притягивают объекты, находящиеся внутри. Но два объекта, помещённых внутрь сферы, должны притягиваться друг к другу — так же, как если бы сферы не было. Это "по классике".

Если же принять Вашу точку зрения, то притяжение между объектами, помещёнными внутрь полой массивной сферы, должно отсутствовать или быть ослаблено, потому что сфера частично или полностью будет экранировать их от "давления небес" со всех сторон.

Вот мне и стало интересно, как Вы себе это вообще представляете. Но после Ваших слов про звёзды, которые "честно говоря" видно только благодаря эффекту самолинзирования, вопрос снимается.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 35 ]  На страницу 1, 2, 3  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group