Взято отсюда:
http://www.abitura.com/mathematics/elementy_1.htm
"В 1970-е годы более сотни специалистов по теории групп образовали своеобразный консорциум, целью которого было представить полную классификацию простых конечных групп. Задача была поставлена крайне трудоемкая, и ее решение остается единственным примером использования «поточного метода» и «разделения труда» в чистой математике. Под общим руководством Даниэля Горенштейна проблема была разбита на «пакеты» задач, которые поручили различным группам математиков всего мира. Через десять лет интенсивной работы удалось составить полную классификацию всех простых конечных групп, состоящую из трех бесконечных счетных семейств и 26 так называемых спорадических групп с особыми свойствами. Существование спорадической группы с самым большим порядком, получившей прозвище «монстр», удалось доказать только при помощи компьютера. К счастью, кризис, разразившийся вокруг этой проблемы, можно обсуждать не вникая в детали классификации групп. Не обязательно даже вообще знать, что такое простая конечная группа.
В 1980-е годы случилось нечто не менее интересное, чем сама классификация групп. Сначала произошел внешне позитивный сдвиг: вроде бы удалось найти метод доказательства существования «монстра» без использования компьютера. Было решено объединить усилия различных групп математиков для проведения массированной проработки нащупанного доказательства, но вместо ожидаемого результата было выявлено множество пробелов в ранее принятых доказательствах. Б о льшую часть дыр удалось залатать, но одна оказалась настолько серьезной, что заявления о том, что получена полная классификация простых конечных групп, были в 1990 году признаны преждевременными. Со временем этот пробел был заполнен доказательством Ашбахера и Смита, и опять тогда казалось, что доказательство вполне корректно [3]. Интересно, что из двадцати томов этого окончательного доказательства до сих опубликованы лишь неполные пять, и это спустя четверть века после того, как теорема была «доказана»; подробнее см. [3], [27]. Михаэль Ашбахер, один из самых заинтересованных участников проекта, не исключает, что в один прекрасный день может быть открыта новая простая конечная группа. Если ее характеристики окажутся родственными характеристикам какой-либо из известных групп, это еще не страшно. Однако Ашбахер не исключает и возможности открытия принципиально новой простой конечной группы, и тогда всю работу по их классификации можно начинать заново; см. [4]. Отметим также, что и Жан-Пьер Серр весьма скептически относится к полноте и корректности имеющегося доказательства [24]. "