Модератору: это все к изначальному вопросу мало относится, так что лучше перенести куда-то.Что тогда есть волны материи?
представьте себе систему из бозонов, находящихся в одном и том же квантовом состоянии и действующих когерентно как одна классическая волна --- вот это и будет волна материи (если эти бозоны --- фотоны, то это будет электромагнитная волна материи, то, что в простонародье зовется электромагнитной волной; если это атомы --- получим Бозе-Эйнштейновский конденсат). Так вот, нет никакой отдельной волновой функции для каждой частицы в этой системе. Волновая функция (которую лучше всего именовать амплитудой вероятности) описывает всю систему целиком --- это функция, заданная на конфигурациионном пространстве системы (если мы говорим о координатном представлении; можно, конечно, задать ее как функцию на пространстве импульсов; в любом случае, аргументом волновой функции будет максимальный набор величин, которые одновременно измеримы). И только лишь в рассматриваемом предельном случае (системы из бозонов, находящихся в одном квантовом состоянии) волновая функция (амплитуда вероятности) становится классическим полем и подчиняется уравнению Шредингера.
Исторически, Шредингер сначала интерпретировал волны де Бройля как классическое материальное поле, описывающее движение одной частицы или системы многих когерентных частиц-бизонов в Бозе-Эйнштейновском конденсате. Эта интерпретация оказалось неверной, поскольку, во-первых, она не сводилась к матричной механике, которую развил Гейзенберг, а, во-вторых, и это более важно, но стало понятным только в дальнейшем, физическая материальная волна не способна родить квантовую запутанность, которая встречается уже в основном состоянии атома Гелия. Шредингеровские волны материи, как он их сначала интерпретировал, кстати, не требуют никакой линейности --- это просто классические скалярные поля (ну, или векторные или тензорные, если нужно включить спин), которые описывают плотности и токи материи в Бозе-Эйнштейновском конденсате.
Позже (вообще-то практически сразу) Шредингер и другие сообразили, что волновая функция (амплитуда вероятности) есть что-то типа решения уравнений Гамильтона-Якоби, т.е. она живет в конфигурационном пространстве, а не в обычном физическом трехмерном (+время) и, по-моему, тот же Шредингер доказал, что матричную механику Гейзенберга можно получить из волновой механики (немного исторического обзора по этому поводу можно почитать у Вайнберга в его новых "Лекциях по квантовой механике").
Те, которые считал нормальными, как-то прошли мимо такого занимательного отличия. Так что я совершенно честно не представляю, что тогда читать, порекомендуйте.
То, что я здесь написал, в том или ином виде должно быть в книге В.В. Киселева, потому что 80% того, что я знаю по квантовой механике, это из лекций, которые он читал не одному поколению студентов (и которые легли в основу книги). Полезно также почитать М.Г. Иванова "Как понимать квантовую механику".
Munin, надеюсь, после того, как я более подробно написал, будет понятнее.
(Оффтоп)
Из-за того, что
становится оператором, действующим на поле, само квантовое поле оператором ещё не становится.
Ну, это Вы, знаете-ли, загнули. На поле никто не действует, оно само себе оператор, действующий на состояния в пространстве Фока. Для квантования классической системы с координатами и импульсами
,
, вот эти
,
возводятся в ранг операторов с соответствующими коммутационными соотношениями. В теории поля (для простоты берем реальное скалярное поле, описывающее частицы с нулевым спином) координаты
заменяются полями
, а импульсы
--- им сопряженными
и
вместе с
возводятся в ранг операторов
и
с соответствующими коммутационными соотношениями (для этого функции
и
в Фурье-разложении классического поля возводятся в ранг операторов уничтожения и рождения для данной моды поля). Гильбертово пространство возводится в пространство Фока, которое есть прямая сумма гильбертовых пространств соответствующих
-частичным состояниям. Так вот, квантовое поле --- оператор, действующий на состояния, живущие в пространстве Фока. В частности, если мы подействуем оператором
на вакуумное состояние
(в свободной теории), а потом спроектируем на состояние
, то получим
. Т.е. оператор поля, действующий на вакуум, создает частицу в точке
.
Чтобы из КТП получить нерелятивисткую квантовую механику, можно ограничиться одночастичными состояниями
. Тогда волновая функция в картине Шредингера есть
, так что
. Отсюда, подставляя Фурье-разложение для оператора поля и используя коммутационные соотношения для операторов рождения и уничтожения, можно получить нерелятивистское уравнение Шредингера.