Допустим, функция непрерывна на интервале интегрирования. Возьмем произвольный отрезок, принадлежащий интервалу, и как угодно непрерывно изменим функцию на нём. На сходимость интеграла это не повлияет. Значит, дело не во внутренних свойствах функции. (я полагаю, что устраивать разрывы нечестно).
Кстати, функция вовсе и не обязана убывать или даже быть ограниченной, чтобы интеграл сходился (имею ввиду бесконечный вправо интервал интегрирования.
Когда берем отрезок, исчезает бесконечность. Все дело в бесконечности. Площадь под графиком одной функции в бесконечных пределах конечна, другой - бесконечна. Различие можно связывать со свойствами функции.