2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Метод наименьших квадратов
Сообщение09.12.2015, 17:14 
Аватара пользователя
Когда мы заменой переменных линеаризируем нашу функции, то применяя МНК, а затем обратное преобразование мы получим не то же самое, если бы применяли МНК в лоб?

 
 
 
 Re: Метод наименьших квадратов
Сообщение09.12.2015, 18:50 
Аватара пользователя
Нет.

 
 
 
 Re: Метод наименьших квадратов
Сообщение09.12.2015, 19:12 
Аватара пользователя
ИСН
Те тоже самое или не тоже самое?

 
 
 
 Re: Метод наименьших квадратов
Сообщение09.12.2015, 19:26 

(Не тоже самое)

Не тоже самое.
Была кривулька в виде набора точек, выпрямили, потом провели прямую, если вернуться назад, то прямая станет кривой. А если не выпрямлять первоначальный набор точек, то будет просто прямая.

 
 
 
 Re: Метод наименьших квадратов
Сообщение09.12.2015, 19:33 
Аватара пользователя
Sicker в сообщении #1080950 писал(а):
не тоже самое?

Хотели сказать "не то же самое"...
Да, не то же самое.
Если взять, например, простейшее $y=\frac{a}{x}$, то получится минимальная сумма квадратов отклонений теоретических обратных величин от экспериментальных обратных величин. Иногда это не лучший вариант. Тогда можно минимизировать сумму квадратов относительных отклонений, или ещё как-то, но я глубоко этим не занимался.

 
 
 
 Re: Метод наименьших квадратов
Сообщение09.12.2015, 19:40 
Аватара пользователя
DeepEconom
Вы меня неправильно поняли :-)
miflin
А ясно, я так и думал) Те при выпрямлении получаем бонус привычной задачи минимизации, и минус- что это уже не совсем честный МНК.

 
 
 
 Re: Метод наименьших квадратов
Сообщение09.12.2015, 20:44 
Аватара пользователя
Честный МНК — это тот, в котором учитываются погрешности "игреков". Если при линеаризации задачи так же пересчитываете и погрешности "игреков", а потом учитываете их в МНК, то это будет тоже честный МНК, и даст тот же самый результат (в пределах погрешности пересчитывания погрешности). Другими словами результат будет совпадать в пределах погрешности.

 
 
 
 Re: Метод наименьших квадратов
Сообщение09.12.2015, 21:43 
Аватара пользователя
B@R5uk в сообщении #1080972 писал(а):
так же пересчитываете и погрешности "игреков"

А тогда мы не сможем применить метод моментов $M_{x,y,xy,y^2}$

 
 
 
 Re: Метод наименьших квадратов
Сообщение09.12.2015, 22:04 
Аватара пользователя
Не знаю что это такое. Он правда так нужен?

 
 
 
 Re: Метод наименьших квадратов
Сообщение09.12.2015, 22:53 
Sicker,

полагаю, Вам будет небезынтересно узнать, что, применив "честный" МНК к линейной задаче $x_i\to y_i$ ($y=kx+b$), и затем поменяв местами аргумент и функцию $(y_i\to x_i)$, Вы тем самым перейдёте к "нечестному" МНК, и, соответственно, полученная прямая будет (в общем случае) совсем другой, вовсе не $x=\dfrac{y}{k}-\dfrac{b}{k}$, как это изначально вожделелось.

 
 
 
 Re: Метод наименьших квадратов
Сообщение10.12.2015, 10:39 
Аватара пользователя
Не то же самое. Меняется спецификация ошибки. Иногда, впрочем, меняется к лучшему, в смысле для преобразованной применение МНК более обосновано.
Если оцениваемая модель $y=ax^b$, то с учётом ошибки, она будет $y=ax^b+\varepsilon$
Логарифмирование изменит распределение $\varepsilon$, если исходно оно было нормальным, то в полученной логарифмированием модели $v=\ln y= \ln a+b\ln x+\eta$ распределение $\eta$ нормальным уже не будет, и дисперсия его уже, вообще говоря, не будет одинаковой для всех наблюдений (а при больших отрицательных значениях $\varepsilon$ и вовсе появятся под логарифмом отрицательные величины).
Однако если спецификация ошибки имеет вид $y=ax^be^{\varepsilon}$, то есть влияние случайных факторов мультипликативно, и его можно полагать проявляющимся домножением на логнормальную случайную величину, взамен прибавления нормальной, что выглядит достаточно похожим на правду, если для разных наблюдений есть основания ждать одинаковых относительных отклонений, и равновероятны одинаковые относительные, то в этом случае после логарифмирования приходим к ситуации, в которой условия применения МНК выполнены в точности, тогда как для непреобразованной задачи они выполняются лишь приближённо.

 
 
 
 Re: Метод наименьших квадратов
Сообщение10.12.2015, 11:17 
Аватара пользователя
Евгений Машеров, глубоко копнули. Если на то пошло, то можно было бы обосновать, когда МНК вообще применим.

 
 
 
 Re: Метод наименьших квадратов
Сообщение10.12.2015, 13:34 
Аватара пользователя
Ну, применим, когда ошибка аддитивна и подчинена нормальному закону распределения с постоянной дисперсией и нулевым средним. Просто при практическом применении руководствуются тезисом: "Если нельзя, но очень хочется, то можно". Не только применительно к МНК, разумеется. Но, скажем, всякого рода регрессионные модели в экономике используются даже там, где точно не выполняются условия. Да и в естественных науках дело лучше, но ненамного.

 
 
 
 Re: Метод наименьших квадратов
Сообщение10.12.2015, 18:58 
Аватара пользователя
Евгений Машеров в сообщении #1081102 писал(а):
...с постоянной дисперсией...
Ну, это не обязательно. Для этого и нужен МНК с весами. Только дисперсию каждого отдельного измерения надо знать.

-- 10.12.2015, 20:02 --

Евгений Машеров в сообщении #1081102 писал(а):
Если нельзя, но очень хочется, то можно
Самое забавное, когда данные, измеренные линейкой, или снятые непосредственно с индикатора, другими словами имеющие в качестве аддитивной погрешности только погрешность отсчёта, непосредственно подставляются в МНК. Если такие данные скормить методу максимального правдоподобия (из которого выводится МНК), то он сойдёт с ума: либо для целой области параметров функция правдоподобия равна константе, а вне этой области равна нулю, либо она равна нулю вообще везде. И нет никакого локального максимума.

 
 
 
 Re: Метод наименьших квадратов
Сообщение11.12.2015, 11:19 
Аватара пользователя
Введение весов в МНК это способ "малой кровью" справиться с нарушений условий применения метода.

 
 
 [ Сообщений: 27 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group