2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Большие кардиналы: за и против
Сообщение02.12.2015, 02:59 
Давайте обсудим существование больших кардиналов.
Какие есть доводы против больших кардиналов?
Что изменится в математике если таких кардиналов нет?

 
 
 
 Re: Большие кардиналы: за и против
Сообщение02.12.2015, 03:37 
ervadi в сообщении #1078741 писал(а):
А если их нет - $ZFC$ неверна?
А если подумать?

 
 
 
 Posted automatically
Сообщение02.12.2015, 03:56 
 i  Тема перемещена из форума «Дискуссионные темы (М)» в форум «Карантин»
по следующим причинам:

- Переформулируйте тему для корня ПРР (М), задав интересующие Вас вопросы.
- Уберите голосование, демократия отменяется.
- Оформите внешние ссылки в соответствии с правилами.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение03.12.2015, 10:05 
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»

 
 
 
 Re: Большие кардиналы: за и против
Сообщение03.12.2015, 10:42 
Аватара пользователя
ervadi в сообщении #1078741 писал(а):
Какие есть доводы против больших кардиналов?
Есть аксиомы, которые противоречат существованию больших кардиналов, например, аксиома $V = L$.

ervadi в сообщении #1078741 писал(а):
Что изменится в математике если таких кардиналов нет?
Насколько я знаю, единственное место в математике, где применяются большие кардиналы (причем не слишком большие, что-то типа двух недостижимых кардиналов) - это теория категорий, когда появляются функторы между большими категориями. Но там для конкретных применений можно ограничить большую категорию до малой.

 
 
 
 Re: Большие кардиналы: за и против
Сообщение03.12.2015, 12:31 
Аватара пользователя
ervadi в сообщении #1078741 писал(а):
Давайте обсудим существование больших кардиналов.
А нафиг этой дурью маяться? Нужны Вам лично большие кардиналы (для которых доказана независимость от аксиом ZFC) — считайте, что они есть. Не нужны — считайте, что нет. А предмета для обсуждения тут нет.

-- Чт дек 03, 2015 12:36:51 --

Xaositect в сообщении #1078976 писал(а):
Насколько я знаю, единственное место в математике, где применяются большие кардиналы (причем не слишком большие, что-то типа двух недостижимых кардиналов) - это теория категорий
Как ни странно, в дескриптивной теории множеств есть какие-то утверждения о множествах действительных чисел, которые зависят от наличия больших кардиналов. Но точно сейчас не помню.

-- Чт дек 03, 2015 12:52:35 --

Нашёл: http://www.mccme.ru/free-books/kanovej/set_theory.pdf, стр. 259.

 
 
 
 Re: Большие кардиналы: за и против
Сообщение03.12.2015, 16:56 
А обычные кардиналы со свойствами больших, как в $ZF+AD$ ?
Кажется, в нестандартном анализе нужно что-бы обычные кардиналы
были измеримы.
Цитата:
Есть аксиомы, которые противоречат существованию больших кардиналов, например, аксиома $V = L$.

Разве всех? $V = L$ противоречит существованию измеримых. Еще какие?
А в $ZF+AD$ что с большими кардиналами?

(Оффтоп)

Цитата:
А нафиг этой дурью маяться? Нужны Вам лично большие кардиналы (для которых доказана независимость от аксиом $ZFC$) — считайте, что они есть. Не нужны — считайте, что нет. А предмета для обсуждения тут нет

Зато есть предмет для дискуссии платонизм_vs_формализм :-)
Не нравится - не участвуйте.

 
 
 
 Re: Большие кардиналы: за и против
Сообщение03.12.2015, 18:17 
Аватара пользователя
ervadi в сообщении #1079042 писал(а):
Кажется, в нестандартном анализе нужно что-бы обычные кардиналы
были измеримы.
Когда кажется — креститься надо.

ervadi в сообщении #1079042 писал(а):
Зато есть предмет для дискуссии платонизм_vs_формализм
Тогда Вы ошиблись разделом. Это к математике отношения не имеет. И, разумеется, в дискуссии подобного рода мне участвовать не интересно.

ervadi в сообщении #1079042 писал(а):
А обычные кардиналы со свойствами больших, как в $ZF+AD$ ?
Что такое "обычные кардиналы"?

 
 
 
 Re: Большие кардиналы: за и против
Сообщение03.12.2015, 18:31 
Аватара пользователя

(Оффтоп)

Скажите, а кардинал Ришелье - это большой кардинал? (если что - я считаю его большим кардиналом!)
Значит, большие кардиналы были! :D

 
 
 
 Re: Большие кардиналы: за и против
Сообщение03.12.2015, 18:45 
Аватара пользователя

(Оффтоп)

Ну что вы, Ришелье - тощий кардинал! Вот Мазарини был большим кардиналом.

 
 
 
 Re: Большие кардиналы: за и против
Сообщение04.12.2015, 01:44 
Цитата:
Что такое "обычные кардиналы"?

Кардиналы меньшие наименьшего недостижимого кардинала.
Например $\aleph_1$, $\aleph_42$, $\aleph_\omega$.
В $ZF+AD$ измеримым будет $\aleph_1$
(Кановей."Аксиома выбора и аксиома детерминированости")
Цитата:
Когда кажется — креститься надо.

Там же (стр59-60) сказано что
Цитата:
"Маленькие" измеримые кардиналы"

связаны с ультрастепенями и что $AD$ позволяет строить "естественные" ультрафильтры над $\omega_1$.
Вот я и предположил что это может нужно в нестандартном анализе. :idea: :oops:
Статей на русском про нестандартный анализ и аксиому детерминированости в свободном
доступе не нашел :-(

(Оффтоп)

И тут видно никто не в курсе

За книжку спасибо.
Цитата:
Тогда Вы ошиблись разделом. Это к математике отношения не имеет

Тогда насколько обоснованы аксиомы больших кардиналов и аксиомы их отрицающие.
И как математики создают или выбирают аксиомы.
Нашел книгу где утверждается что существование недостижимых кардиналов
противоречит $ZF$
http://arxiv.org/pdf/1110.0642v1
http://arxiv.org/pdf/1110.0643v1

(Оффтоп)

Цитата:
Вот Мазарини был большим кардиналом

Вот оно чё, а Тарский с Уламом то не в курсе :-)

 
 
 
 Re: Большие кардиналы: за и против
Сообщение04.12.2015, 02:23 
Аватара пользователя
ervadi в сообщении #1079292 писал(а):
Кардиналы меньшие наименьшего недостижимого кардинала.
А чем они более "обычные", чем те, которые больше первого недостижимого кардинала?

ervadi в сообщении #1079292 писал(а):
Вот я и предположил что это может нужно в нестандартном анализе.
Нафиг не нужно.

ervadi в сообщении #1079292 писал(а):
Тогда насколько обоснованы аксиомы больших кардиналов и аксиомы их отрицающие.
Ну так не обосновывать же их псевдофилософской болтовнёй. Ещё раз: не надо тащить в математический раздел всякую фигню. Хочется Вам это обсуждать — идите в "Свободный полёт".

Если доказано, что некоторое утверждение не зависит от аксиом ZFC, то можно же посмотреть, какие у него и у его отрицания есть следствия. Вдруг там что-нибудь очень интересное обнаружится. И даже если независимость не доказана, а просто никак не удаётся ни доказать, ни опровергнуть, тоже не грех покопаться в следствиях. Вон, например, на гипотезу Римана посмотрите, сколько из неё всяких следствий вывели.

ervadi в сообщении #1079292 писал(а):
Нашел книгу где утверждается что существование недостижимых кардиналов
противоречит $ZF$
http://arxiv.org/pdf/1110.0642v1

http://arxiv.org/pdf/1110.0643v1
Ну надо же! Человек, оказывается, аж пять лет назад доказал, что математики сто лет ерундой занимаются, а никто и не чешется.

 
 
 
 Re: Большие кардиналы: за и против
Сообщение04.12.2015, 03:22 
Цитата:
А чем они более "обычные", чем те, которые больше первого недостижимого кардинала?
Ну назовем их "не большие кардиналы" или "малые", как в книге Кановея или на англ.википедии.
Для одной аксиоматики (на основе $ZFC$) неким свойством , например измеримостью или суперкомпактностью будут обладать кардиналы большие первого недостижимого,
а в другой меньшие : в $ZF+AD$ $\aleph_1$ $\aleph_2$ будут измеримыми
в $ZF+AD+DC$ $\aleph_2$ будет суперкомпактным (Determinacy implies that $\aleph_2$ is supercompact. H.Becker)
http://link.springer.com/article/10.1007%2FBF02761364?LI=true
Цитата:
Нафиг не нужно.

Цитата:
Ну так не обосновывать же их псевдофилософской болтовнёй.

Цитата:
Ну надо же! Человек, оказывается, аж пять лет назад доказал
что математики сто лет ерундой занимаются, а никто и не чешется.

Зачем так агресивно?
Цитата:
Есть аксиомы, которые противоречат существованию больших кардиналов, например, аксиома $V=L$

Где можно глянуть доказательство?
А какие еще аксиомы, кроме аксиомы конструктивности , действительно запрещают существование больших кардиналов?

 
 
 
 Posted automatically
Сообщение04.12.2015, 03:42 
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
по следующим причинам:

Просьба конкретизировать предмет обсуждения и четко и ясно обозначить вопрос, в котором Вы хотите разобраться.
Диспут не надо организовывать, раздел не для этого.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение06.12.2015, 17:28 
Аватара пользователя
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»
Возвращено.

Предмет обсуждения с этого момента следующий:
ervadi в сообщении #1079307 писал(а):
Цитата:
Есть аксиомы, которые противоречат существованию больших кардиналов, например, аксиома $V=L$

Где можно глянуть доказательство?
А какие еще аксиомы, кроме аксиомы конструктивности , действительно запрещают существование больших кардиналов?

 
 
 [ Сообщений: 15 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group