2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Помогите с доказательством
Сообщение03.11.2015, 13:41 
Аватара пользователя
Не могу решить следующую задачу:
Доказать, что $x_n$ ($n=1,2, ...$) есть бесконечно малая (т.е. имеет предел равный 0), указав для всякого $\varepsilon>0$ число $N=N(\varepsilon)$ такое, что $\left| {{x_n}} \right| < \varepsilon$ при $n>N$, если ${x_n} = \frac{1}{{n!}}$.

Решал так:
Поскольку $\frac{1}{{n!}} > 0$, то модуль можно опустить и записать как $\frac{1}{{n!}} < \varepsilon$ или $n! > \frac{1}{\varepsilon }$. Теперь нужно как-то оценить значение $n!$. В интернете нашел следующее неравенство $\sqrt {2\pi n} {\left( {\frac{n}{e}} \right)^n}{e^{\frac{1}{{12n + 1}}}} < n! < \sqrt {2\pi n} {\left( {\frac{n}{e}} \right)^n}{e^{\frac{1}{{12n}}}}$, откуда:

$\sqrt {2\pi n} {\left( {\frac{n}{e}} \right)^n}{e^{\frac{1}{{12n}}}} > \frac{1}{\varepsilon }$

$\sqrt n {\left( {\frac{n}{e}} \right)^n}{e^{\frac{1}{{12n}}}} > \frac{1}{{\varepsilon \sqrt {2\pi } }}$

$\sqrt n \frac{{{n^n}}}{{{e^n}}}{e^{\frac{1}{{12n}}}} > \frac{1}{{\varepsilon \sqrt {2\pi } }}$

$\sqrt n {n^n}\frac{{{e^{\frac{1}{{12n}}}}}}{{{e^n}}} > \frac{1}{{\varepsilon \sqrt {2\pi } }}$

Поскольку $n > \sqrt n$, то можно записать ${n^{n + 1}}\frac{{{e^{\frac{1}{{12n}}}}}}{{{e^n}}} > \frac{1}{{\varepsilon \sqrt {2\pi } }}$

Кроме того $\frac{{{e^{\frac{1}{{12n}}}}}}{{{e^n}}} < 1$, а значит и подавно ${n^{n + 1}} > \frac{1}{{\varepsilon \sqrt {2\pi } }}$

... и вот в этом месте я не знаю, что делать дальше. Чем бы я не заменял ${n^{n + 1}}$ в любом случае $n$ будет как в основании так и в показателе степени, и ни как не получается от этого отделаться.
Подскажи те чего делать то?

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 13:46 
Жуть какая. С Вас же никто не требует точных оценок и минимальных значений $N$, начиная с которого выполнено неравенство.

Оцените последовательность сверху, получите более простое неравенство относительно $n$.

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 13:51 
Аватара пользователя
Нет как раз и требуется указать значение $n$ при котором $\left| {{x_n}} \right| < \varepsilon$. Вот я его и вычисляю.

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 13:52 
Какое-то. Разве написано "минимальное"?
И разве $n$? может, $N$?

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 13:55 
Аватара пользователя
Так я и не ищу минимальное, мне нужно просто неравенство вида $n>\varepsilon ...$, где в правой части могут быть ещё и другие члены, главное чтоб $n$ среди них не было. В общем, чего разглагольствовать то, предложите свой вариант.

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 13:57 
Сорри, разглагольствуете Вы. Я свой вариант предложила:
Otta в сообщении #1069829 писал(а):
Оцените последовательность сверху, получите более простое неравенство относительно $n$.

Первый курс, третья пара по анализу.

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 14:24 
Аватара пользователя
В общем, не понимаю я чего вы от меня хотите. Сверху $n$ ограничена 1, снизу 0. Вот только как мне это поможет в получении заветной формулы?

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 14:30 
Последовательности бывают разные. Большинство из них гораздо сложнее, чем то, что Вы пишете. Есть, например, бесконечно малая (?) последовательность $\dfrac{n}{n^3+n+1}$. При некоторых достаточно больших $n$ ее можно сделать меньше наперед выбранного $\varepsilon$. Как Вас учили это делать, можете сказать?

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 14:53 
Cynic в сообщении #1069835 писал(а):
В общем, чего разглагольствовать то, предложите свой вариант
В общем, конечно, вы правы: чего разглагольствовать, почему бы Otta не пойти да не сдать за вас экзамены?
Cynic в сообщении #1069833 писал(а):
Нет как раз и требуется указать значение $n$ при котором $\left| {{x_n}} \right| < \varepsilon$
Именно тут некое тонкое место, на котором часто спотыкаются. Вам не нужно решать неравенство, то бишь, находить всё множество решений. Вам нужно найти $N$, такое что все $n$, большие его удовлетворяют неравенству — чувствуете разницу? Вот чтобы решить уравнение ${n!}\,{\geq}\,{10}$, надо посчитать факториалы и прийти к решению: $n\geq4$. А в рассматриваемом случае вполне корректно рассуждать, к примеру, так: $10! =10\times\cdots$, а стало быть, явно больше десяти. И ответ $n \geq 10$ — в данном, повторюсь, случае — абсолютно верен.

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 15:03 
Аватара пользователя
Cynic в сообщении #1069843 писал(а):
Сверху $n$ ограничена 1, снизу 0

Полагаю, Вы имели в виду не $n$, а $x_n$. Это конечно верно, но уж больно грубая оценка и ничего не даёт (так 1 к нулю идти не хочет), ещё грубее и бесполезнее была бы $x_n<n<n^2<\ldots$. А нельзя ли чуточку потоньше, но всё-таки несравнимо грубее формулы из интернета?

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 16:38 
Аватара пользователя

(Оффтоп)

Cynic, если интересуетесь, у Зорича рассматривается последовательность $\frac{q^n}{n!},\ q\in\mathbb{R}.$ Там в доказательстве используется теорема Вейерштрасса.

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 17:22 
Аватара пользователя
gefest_md в сообщении #1069890 писал(а):

(Оффтоп)

Cynic, если интересуетесь, у Зорича рассматривается последовательность $\frac{q^n}{n!},\ q\in\mathbb{R}.$ Там в доказательстве используется теорема Вейерштрасса.

Спасибо конечно, но до теоремы Вейерштрасса мне ещё далеко :roll:

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 18:41 
Аватара пользователя
Короче решил так:

$\frac{1}{{n!}} \leqslant \frac{1}{n} < \varepsilon$

откуда

$n > \frac{1}{\varepsilon }$

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 18:42 
Молодца.

 
 
 
 Re: Помогите с доказательством
Сообщение03.11.2015, 18:53 
Аватара пользователя
И "скромно" не пишет, что я подсказал это ему на другом форуме. :D

 
 
 [ Сообщений: 17 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group