2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Найти ортогональную проекцию и ортогональную составляющую
Сообщение19.03.2014, 17:37 
Добрый день!
Столкнулся с такой задачей:
Требуется найти ортогональную проекцию $y$ и ортогональную составляющую $z$ вектора $x$ на линейное подпространство $L$
Дан вектор $x=(7;4;-1;2)$, а линейное подпространство $L$ задано системой уравнений:
$\begin{cases} 
2x_1+x_2+x_3+3x_4=0\\
3x_1+2x_2+2x_3+x_4=0\\
x_1+2x_2+2x_3-9x_4=0
\end{cases}$
Помогите пожалуйста! С чего надо начать? Я так понял что надо использовать скалярные произведения и Матрицу Грама.
Также попробовал решить систему уравнения, в результате пришлось выражать через свободные переменные и получилось два вектора, но как их тут использовать?!
Векторы такие получились $(0,-1,1,0),(-5, 7, 0,1)$

 
 
 
 Re: Найти ортогональную проекцию и ортогональную составляющую
Сообщение19.03.2014, 18:06 
Аватара пользователя
В процессе решения системы уравнений Вы как-то её преобразовывали, при этом выяснялось, что некоторые уравнения являются линейными комбинациями остальных (или, как частный случай, сводятся к $0=0$). Такие уравнения Вы выбрасывали. Приведите, пожалуйста, конечный вид системы после этих преобразований.

 
 
 
 Re: Найти ортогональную проекцию и ортогональную составляющую
Сообщение19.03.2014, 18:37 
$\begin{pmatrix}2&  1& 1& 3\\ 3&  2&  2& 1\\ 1&  2&  2& -9&\end{pmatrix}$ --> $\begin{pmatrix}1&  \frac12& \frac12& \frac32\\ 0&  \frac12&  \frac12& -\frac72\\ 0&  \frac32&  \frac32& -\frac{21}{2}&\end{pmatrix}$ --> $\begin{pmatrix}1&  \frac12& \frac12& \frac32\\ 0&  1&  1& -7\\ 0&  0&  0& 0&\end{pmatrix}$

 
 
 
 Re: Найти ортогональную проекцию и ортогональную составляющую
Сообщение19.03.2014, 18:58 
Аватара пользователя
Хорошо.
Можно ещё первое уравнение вернуть к исходному виду, чтобы дробей не было:
$\begin{bmatrix}2&  1& 1& 3\\ 0&  1&  1& -7\end{bmatrix}$
Напрашиваются ещё кой-какие преобразования, но это уже дело вкуса.

Посмотрите на матрицу системы как на два вектора (записанных в строку): $a_1=\begin{bmatrix}2\\1\\1\\3\end{bmatrix}\quad a_2=\begin{bmatrix}0\\1\\1\\-7\end{bmatrix}$.
А найденные решения обозначим $b_1=\begin{bmatrix}0\\-1\\1\\0\end{bmatrix}\quad b_2=\begin{bmatrix}-5\\7\\0\\1\end{bmatrix}$

Так как векторы $b_1, b_2$ удовлетворяют системе, то
$\begin{bmatrix}2& 1& 1& 3\\ 0& 1& 1& -7\end{bmatrix}\begin{bmatrix}0&-5\\-1& 7\\ 1& 0\\ 0& 1\end{bmatrix}=\begin{bmatrix}0& 0\\0& 0\end{bmatrix}$
А теперь увидьте в этой записи четыре скалярных произведения:
$(a_1, b_1)=0\quad (a_1, b_2)=0$
$(a_2, b_1)=0\quad (a_2, b_2)=0$

Увидите — напишите «увидел».

 
 
 
 Re: Найти ортогональную проекцию и ортогональную составляющую
Сообщение19.03.2014, 19:07 
Да, увидел!
Получается
$\begin{bmatrix}2& 1& 1& 3\\ 0& 1& 1& -7\end{bmatrix}\begin{bmatrix}0&-5\\-1& 7\\ 1& 0\\ 0& 1\end{bmatrix}=\begin{bmatrix}&a_1& \\ &a_2&\end{bmatrix}\begin{bmatrix}b_1 \\\\ b_2\end{bmatrix}=\begin{bmatrix}(a_1,b_1)& (a_1,b_2)\\(a_2,b_1) & (a_2,b_2)\end{bmatrix}=\begin{bmatrix}0& 0\\0& 0\end{bmatrix}$

 
 
 
 Re: Найти ортогональную проекцию и ортогональную составляющую
Сообщение19.03.2014, 19:33 
Аватара пользователя
Очень хорошо.

Так вот, что мы получили.
Векторы $b_1$ и $b_2$ составляют базис $L$.
Векторы $a_1$ и $a_2$ составляют базис ортогонального дополнения к $L$.
Все вместе они составляют базис линейного пространства $V$.
(Конечно, надо уметь эти утверждения обосновать, если что, задавайте вопросы).

Найдите коэффициенты разложения данного вектора $x$ по этим векторам:
$x=\alpha_1 a_1+\alpha_2 a_2+\beta_1 b_1 + \beta_2 b_2$, для чего решите систему
$\begin{bmatrix}2& 0& 0&-5\\ 1& 1&-1& 7\\1& 1& 1& 0\\3& -7& 0& 1\end{bmatrix}\begin{bmatrix}\alpha_1\\\alpha_2\\\beta_1\\\beta_2\end{bmatrix}=\begin{bmatrix}7\\4\\-1\\ 2\end{bmatrix}$

И тогда $\beta_1 b_1 + \beta_2 b_2$ будет лежать в $L$, а $\alpha_1 a_1+\alpha_2 a_2$ будет ей ортогональна (по-моему, оба утверждения очевидны). Иными словами, мы нашли $y$ и $z$.

 
 
 
 Re: Найти ортогональную проекцию и ортогональную составляющую
Сообщение19.03.2014, 20:01 
Решая эту систему у меня получились довольно странные и неприятные числа, но вроде бы правильные!
$\alpha_1=\frac{241}{101}; \alpha_2=\frac{68}{101}; \beta_1=\frac{-410}{101}; \beta_2=\frac{-45}{101}$
Но тогда если находить $\alpha_1 a_1+\alpha_2 a_2$ и $\beta_1 b_1 + \beta_2 b_2$ то ответ получается совсем некрасивым... Так и должно быть?

 
 
 
 Re: Найти ортогональную проекцию и ортогональную составляющую
Сообщение19.03.2014, 20:15 
Аватара пользователя
Вы пока получите эти два вектора (можно вынести $\frac 1{101}$ за вектор, чтоб не было знаменателей).
А я покажу, как другим способом найти, это будет проверка.

Система уравнений, данная в задаче, определяет подпространство $M$, к которому $L$ является ортогональным дополнением. Надо представить $x=y+z$, где $y\in L, z\in M$.

Мы нашли базис $M$: это векторы $a_1$ и $a_2$. Так как $y\in L$, то $(a_1, y)=0, (a_2, y)=0$, поэтому
$(a_1, x)=(a_1, y+z)=(a_1, z)=(a_1, \alpha_1 a_1+\alpha_2 a_2)=(a_1, a_1)\alpha_1+(a_1, a_2)\alpha_2$
$(a_2, x)=(a_2, y+z)=(a_2, z)=(a_2, \alpha_1 a_1+\alpha_2 a_2)=(a_2, a_1)\alpha_1+(a_2, a_2)\alpha_2$

Получаем систему
$\begin{bmatrix}(a_1, a_1)&(a_1, a_2)\\(a_2, a_1)&(a_2, a_2)\end{bmatrix}\begin{bmatrix}\alpha_1\\\alpha_2\end{bmatrix}=\begin{bmatrix}(a_1, x)\\(a_2, x)\end{bmatrix}$
или
$\begin{bmatrix}15&-19\\-19&51\end{bmatrix}\begin{bmatrix}\alpha_1\\\alpha_2\end{bmatrix}=\begin{bmatrix}23\\-11\end{bmatrix}$
Откуда $\alpha_1=\frac{241}{101}, \alpha_2=\frac{68}{101}$

Теперь находим $z=\alpha_1 a_1+\alpha_2 a_2$ и $y=x-z$.
В этом способе мы не решаем систему, данную по условию, а только преобразуем её, чтобы найти базис $M$.

 
 
 
 Re: Найти ортогональную проекцию и ортогональную составляющую
Сообщение19.03.2014, 20:43 
$z=\alpha_1 a_1+\alpha_2 a_2=\frac{241}{101}\begin{bmatrix}2\\1\\1\\3\end{bmatrix}+\frac{68}{101}\begin{bmatrix}0\\1\\1\\-7\end{bmatrix}=\begin{bmatrix}\frac{482}{101}\\\\\frac{309}{101}\\\\\frac{309}{101}\\\\\frac{247}{101}\end{bmatrix}=\frac{1}{101}\begin{bmatrix}482\\309\\309\\247\end{bmatrix}$

$y=\beta_1 b_1+\beta_2 b_2=\frac{-410}{101}\begin{bmatrix}0\\-1\\1\\0\end{bmatrix}+\frac{-45}{101}\begin{bmatrix}-5\\7\\0\\1\end{bmatrix}=\begin{bmatrix}\frac{225}{101}\\\\\frac{95}{101}\\\\\frac{-410}{101}\\\\\frac{-45}{101}\end{bmatrix}=\frac{1}{101}\begin{bmatrix}225\\95\\-410\\-45\end{bmatrix}$

 
 
 
 Re: Найти ортогональную проекцию и ортогональную составляющую
Сообщение19.03.2014, 20:46 
Аватара пользователя
Правильно.

Третий способ.

Мы нашли базис $L$: это векторы $b_1$ и $b_2$. Так как $z\in M$, то $(b_1, z)=0, (b_2, z)=0$, поэтому
$(b_1, x)=(b_1, y+z)=(b_1, y)=(b_1, \beta_1 b_1+\beta_2 b_2)=(b_1, b_1)\beta_1+(b_1, b_2)\beta_2$
$(b_2, x)=(b_2, y+z)=(b_2, y)=(b_2, \beta_1 b_1+\beta_2 b_2)=(b_2, b_1)\beta_1+(b_2, b_2)\beta_2$

Получаем систему
$\begin{bmatrix}(b_1, b_1)&(b_1, b_2)\\(b_2, b_1)&(b_2, b_2)\end{bmatrix}\begin{bmatrix}\beta_1\\\beta_2\end{bmatrix}=\begin{bmatrix}(b_1, x)\\(b_2, x)\end{bmatrix}$
или
$\begin{bmatrix}2&-7\\-7&75\end{bmatrix}\begin{bmatrix}\beta_1\\\beta_2\end{bmatrix}=\begin{bmatrix}-5\\-5\end{bmatrix}$
Откуда $\beta_1=-\frac{410}{101}, \beta_2=-\frac{45}{101}$

Теперь находим $y=\beta_1 b_1+\beta_2 b_2$ и $z=x-y$.

Всё ли понятно во втором и третьем способе?

-- Ср мар 19, 2014 20:03:16 --

Пусть $y$ и $z$ найдены. Что нужно проверить, чтобы быть уверенным, что решение правильное.
$\bullet$ $y+z=x$
$\bullet$ $y$ ортогонален каждому вектору-строке исходной системы (стало быть, $y$ принадлежит $L$)
$\bullet$ $(y, z)=0$ (стало быть, $z$ принадлежит $M$ — ортогональному дополнению к $L$)

 
 
 
 Re: Найти ортогональную проекцию и ортогональную составляющую
Сообщение19.03.2014, 21:21 
Да, в решении все понятно, огромное спасибо!
Сейчас полез в ответы и удивился увидев хороший не похожий на наш ответ! Оказалось, что на самом деле в условии $x=(7;-4;-1;2)$.
Сколько же лишних расчетов! :facepalm:
Я перерешал немного для нового X и получил хорошие числа $\alpha_1=1; \alpha_2=0; \beta_1=-2;\beta_1=-1$
$z=\alpha_1 a_1+\alpha_2 a_2=\begin{bmatrix}2\\1\\1\\3\end{bmatrix}+0=\begin{bmatrix}2\\1\\1\\3\end{bmatrix}

$y=\beta_1 b_1+\beta_2 b_2=-2\begin{bmatrix}0\\-1\\1\\0\end{bmatrix}-\begin{bmatrix}-5\\7\\0\\1\end{bmatrix}=\begin{bmatrix}5\\-5\\-2\\-1\end{bmatrix}$

Теперь проверим, что решение правильное. $y+z=\begin{bmatrix}5\\-5\\-2\\-1\end{bmatrix}+\begin{bmatrix}2\\1\\1\\3\end{bmatrix}=\begin{bmatrix}7\\-4\\-1\\2\end{bmatrix}=x$

$(y,z)=5*2-5*1-2*1-1*3=0$

Значит, все правильно!

Огромное спасибо за помощь и столь развернутое и понятное объяснение!

 
 
 
 Re: Найти ортогональную проекцию и ортогональную составляющую
Сообщение19.03.2014, 21:25 
Аватара пользователя
Рад был помочь. Выберите тот способ из описанных, который Вам больше всего понравился, и примените его к правильным данным.

 
 
 
 Re: Найти ортогональную проекцию и ортогональную составляющую
Сообщение16.10.2015, 16:04 
Как вы нашли векторы этой системы? Можете подробно расписать я имею ввиду векторы (0,-1,1,0),(-5, 7, 0,1)

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group