2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Система ДУЧП второго порядка
Сообщение23.09.2015, 20:17 
$${$\square$}\varphi+\frac{c}{2}{$\square$}\chi+m^2\varphi+m\mu\chi=0$$
$${$\square$}\chi+\frac{c}{2}{$\square$}\varphi+M^2\chi+m\mu\varphi=0,$$
где $\square$ - оператор Даламбера.
Я пытался представить $\varphi(t,x,y,z)$ и $\chi(t,x,y,z)$ в виде произведения временной на координатную части, но не помогло. Буду признателен за совет, как такое решать. Если что, я физик по образованию.

 
 
 
 Re: Система ДУЧП второго порядка
Сообщение24.09.2015, 13:00 
Аватара пользователя
Попробуйте избавиться от слагаемых при первых степенях

 
 
 
 Re: Система ДУЧП второго порядка
Сообщение24.09.2015, 13:44 
Аватара пользователя
Существуют ровно две линейно независимые пары $(a,b)$, при которых некоторая линейная комбинация этих уравнений имеет вид $${\square}( a\varphi+b\chi)=C(a\varphi+b\chi)$$

 
 
 
 Re: Система ДУЧП второго порядка
Сообщение25.09.2015, 16:05 
Цитата:
Существуют ровно две линейно независимые пары $(a,b)$,

Вы имеете ввиду, что они подчиняются соотношению $a^2=b^2?$ Но тогда ведь не получится в левой части Вашего выражения, поскольку $am^2\varphi+bM^2\chi$ не позволяют вынести общим множителем $a\varphi+b\chi$

 
 
 
 Re: Система ДУЧП второго порядка
Сообщение25.09.2015, 17:01 
Аватара пользователя
Нет, не имею в виду. Возьмите хоть неопределенные коэффициенты , умножив первое уравнение на $A$, второе на $B$ и сложив. Потом внесите условие: отношение коэффициентов при $\varphi$ к при $\chi$ под оператором Даламбера такое же, как вне оператора. Получится квадратное уравнение с двумя корнями $\frac AB$, каждому корню будет соответствовать уравнение такого вида, как я ранее указал.

 
 
 
 Re: Система ДУЧП второго порядка
Сообщение25.09.2015, 18:11 
Ascold
Это уравнения Лагранжа для той самой задачи, которую Вы обсуждали на физическом форуме.
Начать следует с перехода в импульсное представление - дальше ничего сложного. Уравнения ведь линейные.
Вам ведь еще операторы рождения/уничтожения нужно ввести, раз Вы решаете квантовую задачу.

 
 
 
 Re: Система ДУЧП второго порядка
Сообщение25.09.2015, 19:45 
Аватара пользователя
Что можно сказать о константах $c$ и $\mu$?

 
 
 
 Re: Система ДУЧП второго порядка
Сообщение25.09.2015, 20:16 
Цитата:
Возьмите хоть неопределенные коэффициенты , умножив первое уравнение на $A$, второе на $B$ и сложив. Потом внесите условие: отношение коэффициентов при $\varphi$ к при $\chi$ под оператором Даламбера такое же, как вне оператора.

благодарю, теперь понял. Да, там квадратное ур-е получилось не то чтобы сильно красивое , к сожалению.
Цитата:
Это уравнения Лагранжа для той самой задачи, которую Вы обсуждали на физическом форуме.
Начать следует с перехода в импульсное представление - дальше ничего сложного.

Я переходил - если раскладывать по пространственному 3-импульсу, то получаются дифуры на амплитуды, которые решать надо наподобие вышеуказанного составления линейной комбинации, а если сразу разложить по 4-импульсам, то у меня возникло нечто несуразное - завтра с этим поразбираюсь(получилось что или массы полей равны, или нельзя интегрировать по одной и той же координате $p_0$).
Цитата:
Что можно сказать о константах $c$ и $\mu$?

$|c|\le2,$ $\mu\le M$

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group