2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Наибольшее число с помощью n единиц (головоломка)
Сообщение05.09.2015, 18:33 
Аватара пользователя


01/12/11

8634
Для каждого $n\in\mathbb{N}$ определить, какое наибольшее число можно записать с помощью $n$ единиц.
Красота этой головоломки в том, что каждый следующий этап (после перехода к следующему $n$) не похож на предыдущий.

 Профиль  
                  
 
 Re: Наибольшее число с помощью n единиц (головоломка)
Сообщение05.09.2015, 18:37 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Хм... В таких головоломках всегда возможно какое-нибудь жульничество... Как проверить/доказать, что полученное число действительно максимальное? Для этого надо хотя бы формализовать понятие "записать с помощью". Какие (арифметические) действия разрешены?

 Профиль  
                  
 
 Re: Наибольшее число с помощью n единиц (головоломка)
Сообщение05.09.2015, 18:54 
Заслуженный участник
Аватара пользователя


20/08/14
8506
Вот-вот. И вообще арифметические ли они? Может, $n$ единиц выстроить в что-то типа $11^{11^{11}}$?

 Профиль  
                  
 
 Re: Наибольшее число с помощью n единиц (головоломка)
Сообщение05.09.2015, 19:35 
Заслуженный участник


27/04/09
28128
В общем виде задача легко решается, если брать только функции, монотонные по всем аргументам. Допустим, разрешены операции $f\in F$ арностей $\alpha f$ и монотонно возрастающие/убывающие по $k$-му аргументу при $\mu_kf = \pm1$. Обозначим $Y^\mu(n)$ максимум/минимум при $\mu=\pm1$, который можно получить из $n$ единиц с помощью операций $F$. Также $\operatorname{m}^\mu = \max,\min$ при $\mu=\pm1$.

После недолгого раздумья выкинем унарные и нульарные операции, и единственной нульарной поставим единицу. С учётом этого,$$
Y^\mu(n) = \operatorname{m}^\mu\left\{ 
f\sigma : f\in F, \lvert\sigma\rvert = \alpha f = N, \bigwedge_{i=1}^N\sigma_i = Y^{\mu\mu_i f}(n_i), n = [f=1] + \sum_{i=1}^N n_i 
\right\}, 
$$т. е. достаточно просто. Немонотонные по аргументам операции сводят задачу к скучному перебору, потому рассматривать их я не буду.

-- Сб сен 05, 2015 21:41:16 --

М-да, $1\ldots1_b$ нормально не выражается. Если сделать это семейством унарных операций $\mathrm b_n$, где $n$ — число единиц, получим фикс$$ 
Y^\mu(n) = \operatorname{m}^\mu\left\{ 
f\sigma : f\in F, \lvert\sigma\rvert = \alpha f = N, \bigwedge_{i=1}^N\sigma_i = Y^{\mu\mu_i f}(n_i), n = [f=1] + \sum_{i=1}^n [f=\mathrm b_i]i + \sum_{i=1}^N n_i 
\right\}. 
$$

 Профиль  
                  
 
 Re: Наибольшее число с помощью n единиц (головоломка)
Сообщение05.09.2015, 20:33 
Заслуженный участник


28/12/12
7930
Какие символы вообще разрешены?
А то для двух и более единиц можно написать выражение вида $-\ln(1-1)$ и вуаля ;).

 Профиль  
                  
 
 Re: Наибольшее число с помощью n единиц (головоломка)
Сообщение05.09.2015, 21:34 
Заслуженный участник


20/08/14
11766
Россия, Москва
Тогда ещё проще (в числителе любое конечное количество единиц): $\frac{1+1+1+1+...}{1-1}$ :facepalm:

 Профиль  
                  
 
 Re: Наибольшее число с помощью n единиц (головоломка)
Сообщение05.09.2015, 21:54 
Заслуженный участник
Аватара пользователя


20/08/14
8506
А шо, "бесконечность" - это число?

 Профиль  
                  
 
 Re: Наибольшее число с помощью n единиц (головоломка)
Сообщение05.09.2015, 22:31 
Заслуженный участник
Аватара пользователя


08/11/11
5940
Anton_Peplov в сообщении #1050715 писал(а):
Может, $n$ единиц выстроить в что-то типа $11^{11^{11}}$?


Подозреваю, что если разрешено возведение в степень, то максимальное, действительно, будет такое или, при нечётном количестве единиц, то же, но на самом верху 111.

Если только четыре действия арифметики со скобками, то больше $1111\ldots 11$ как-то не получается.

А можно ещё разрешить тетрации. Или, более последовательно, гипероператоры (разумеется, порядок гипероператора должен быть сам получен с помощью единиц).

 Профиль  
                  
 
 Re: Наибольшее число с помощью n единиц (головоломка)
Сообщение05.09.2015, 23:07 
Заслуженный участник
Аватара пользователя


09/09/14
6328
g______d в сообщении #1050759 писал(а):
Если только четыре действия арифметики со скобками, то больше $1111\ldots 11$ как-то не получается.

Ну трюки можно самые разные придумывать. Бывают ведь не только верхние индексы слева и справа. Иногда системы исчисления нижними указывают. Например, $1111_{1111}$ больше десятичного $11111111$.

 Профиль  
                  
 
 Re: Наибольшее число с помощью n единиц (головоломка)
Сообщение06.09.2015, 00:11 
Заслуженный участник
Аватара пользователя


08/11/11
5940
grizzly в сообщении #1050766 писал(а):
Иногда системы исчисления нижними указывают.


Это тоже операция. Поэтому и хотелось бы видеть список разрешённых операций, чтобы хотя бы исключить всякие тетрации и функции Аккермана.

 Профиль  
                  
 
 Re: Наибольшее число с помощью n единиц (головоломка)
Сообщение06.09.2015, 17:09 
Заслуженный участник


27/04/09
28128
Угу. А ТС так и молчит.

Кстати, какие из упомянутых операций не монотонны по какому-нибудь из аргументов? Сложение, умножение, вычитание, деление — да. Возведение в степень — да, хотя уже появляется зависимость от значения другого аргумента, если позволять отрицательные и нецелые значения — может, а ну эти вычитание с делением? (Хотя лучше ну неарифметические операции.) «В системе счисления» — да, тетрация должна быть тоже, и даже гипероператор, если аргументы опять натуральные.

 Профиль  
                  
 
 Re: Наибольшее число с помощью n единиц (головоломка)
Сообщение06.09.2015, 23:45 
Аватара пользователя


01/12/11

8634
DimaM в сообщении #1050742 писал(а):
Какие символы вообще разрешены?

А если решить, что разрешены только единицы?

-- 06.09.2015, 23:47 --

arseniiv в сообщении #1050963 писал(а):
Угу. А ТС так и молчит.

Мит'асфе джиддан, макянш ынди уакт.
Это по-арабски означает "очень извиняюсь, у меня не было времени". Кстати, "уакт" это не только по-арабски "время", но и по-татарски.

 Профиль  
                  
 
 Re: Наибольшее число с помощью n единиц (головоломка)
Сообщение06.09.2015, 23:56 
Заслуженный участник


27/04/09
28128
Ktina в сообщении #1051118 писал(а):
А если решить, что разрешены только единицы?
:mrgreen: Уточним вопрос: какие обозначения разрешены?

 Профиль  
                  
 
 Re: Наибольшее число с помощью n единиц (головоломка)
Сообщение07.09.2015, 00:05 
Заслуженный участник
Аватара пользователя


20/08/14
8506
Ktina в сообщении #1051118 писал(а):
А если решить, что разрешены только единицы?

то встает вопрос: вот такая запись, например: $11_{111}$ - по условию задачи что-нибудь обозначает? Если да, то что именно? Потому что на минуточку она может означать число одиннадцать, записанное в системе счисления с основанием сто одиннадцать; может означать примененный к числу одиннадцать гипероператор сто одиннадцатого порядка; может означать бутерброд с маслом; может не означать вообще ничего. Вы вообще в курсе, что в математике бывают самые разные обозначения?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 14 ] 

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: lel0lel


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group