Если бы я этого не знал, то постеснялся бы заходить в физический раздел.
Вы настолько многого не знаете, и не стесняясь этого незнания, заходите в физический раздел, что более приличного поведения я от вас никак не ожидал.
Я понимаю, что гравитационный потенциал удовлетворяет уравнению Пуассона.
Надо уточнить. Есть две физические теории гравитации. Это Ньютон и ОТО. В теории Ньютона это верно. В ОТО - нет, и становится верным только в пределе (довольно замысловатом, увы).
У меня вопрос терминологический. Как эту мысль выразить корректно? Если открыть Мизнера, Торна, Уилера (параграф 7.1), то прочтём "Ньютоновские гравитационные поля распространяются с бесконечной скоростью".
Quod licet Jovi, non licet bovi.
В переводе: "Что позволено Мизнеру-Торну-Уилеру, то не позволено среднему форумному
трепачу пользователю начала 21 века. Ситуация изменилась. МТУ писали для физиков, и позволяли себе вольность формулировок, поскольку все их подразумевавшиеся читатели обладали достаточной квалификацией, чтобы знать, отсылка к чему идёт, и как это надо понимать.
Сегодня, во-первых, читатель МТУ чаще невежествен, а во-вторых, выступая на форумах, он имеет дело с читателями ещё более опасными - альтами и примкнувшими к ним троллями, и широкой массой сомневающихся. Здесь необходима строгость и точность формулировок, чтобы не попасть под перекрёстный огонь "
вы противоречите сами себе!" и "
вы прямо подтверждаете то, что написано в <XXX>-альттеории!".
----
Электростатика и электродинамика должны вас научить таким вещам:
- статические поля не распространяются, они такие, какие есть;
- статика (аналог гравитации Ньютона) получается из динамики предельным переходом с бесконечно малой скоростью движения источников;
- в динамике распространяются
возмущения поля, хотя про это
жаргонно частенько говорят, будто распространяются сами поля;
- предельный переход от динамики к статике включает в себя (хотя не ограничивается) предельным переходом
который чисто математически можно понимать как
- "бесконечную скорость распространения волн"; в то же время, некоторые другие детали не позволяют столь прямолинейной интерпретации. Тж. см. УФН
161 (9) 177–194 (1991, №9).
После этого легко можно научить себя всегда говорить правильно.