2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 риманова поверхность для функции sqrt(z^2)
Сообщение08.08.2015, 16:26 
При построении поверхности для $w = \sqrt{z}$ бралось две копии $z$-плоскости, с каждой из копий ассоциировалась половина $w$-плоскости, после копии $z$-плоскостей сшивались по разрезам и тем самым между полученной римановой поверхностью по $z$ и комплексной плоскостью по $w$ функцией $w = \sqrt{z}$ устанавливалось взаимно-однозначное соответствие.

В случае же функции $w  = \sqrt{z^2}$ тоже приходится брать две копии $z$-плоскости, однако теперь каждую из них уже нельзя будет проассоциировать с половиной $w$-плоскости - при обходе точки $z = 0$ образ траектории тоже обходит $w = 0$. Что же делать? Брать две копии $w$-плоскости и выделять однозначные ветви функции через ассоциирование каждой копии $z$-плоскости с копией $w$-плоскости? Тогда получится, что функция $\sqrt{z^2}$ будет устанавливать взаимно-однозначное соответствие между римановой поверхностью в виде двух непересекающихся $z$-плоскостей и двух непересекающихся $w$-плоскостей. Можно ли так? Спрашиваю потому, что во всех примерах, которые я видел, риманова поверхность отображалась на всю $w$-плоскость.

Здесь попутно ещё возникает вопрос, что делать с точкой $z = 0$ и можно ли сшить в одной этой точке копии $z$-плоскостей (и то же самое при этом сделать с плоскостями по $w$). С одной стороны, при проходе через $z = 0$ траектория сможет перейти с одного листа на другой. С другой - точка ветвления определяется сменой листов при обходе точки по окружностям малых радиусов, а не при проходе через саму точку.

Спасибо.

 
 
 
 Re: риманова поверхность для функции sqrt(z^2)
Сообщение08.08.2015, 20:36 
Аватара пользователя
Взаимно-однозначного не может по определению, а так да, два экземпляра плоскости. Для чего тут вообще риманову поверхность напрягать? и так же все просто.

-- Сб авг 08, 2015 21:41:39 --

Пардон, может, не вчитался, но все равно незачем это.

 
 
 
 Re: риманова поверхность для функции sqrt(z^2)
Сообщение08.08.2015, 21:48 
Аватара пользователя
Это просто две независимые функции. Примерно как ветви $e^z $, которые различаются множителем $e^{2\pi niz} $.

 
 
 
 Re: риманова поверхность для функции sqrt(z^2)
Сообщение09.08.2015, 00:13 
Использую римановы поверхности для этой задачи, чтобы разобраться, как они строятся в более сложных. Например, для функции $\sqrt[4]{z^2}$ в книжном примере риманова поверхность состоит из двух пар листов, в каждой паре можно переходить с листа на лист, но сами пары независимы - с одной пары на другую нельзя перейти ни с одного листа. Если можно строить такую поверхность, то логично, что можно строить и для $\sqrt{z^2}$ так, как я описал. Всё отличие от $\sqrt[4]{z^2}$ в том, что пара листов заменяется одним листом, но мне это не кажется принципиальным. В том же примере не оговаривалось, куда происходит отображение построенной поверхности. Интуиция подсказывает, что в пару непересекающихся комплексных плоскостей. Но тогда такой же результат должен быть и для функции $\sqrt{z^2}$. Поэтому и спрашиваю...

 
 
 
 Re: риманова поверхность для функции sqrt(z^2)
Сообщение09.08.2015, 09:09 
Аватара пользователя
Если листы независимы, то их можно рассматривать как две отдельные функции.

 
 
 
 Re: риманова поверхность для функции sqrt(z^2)
Сообщение11.08.2015, 16:02 
Аватара пользователя
Школа подсказывает, что $\sqrt{z^2}=\pm z$...

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group