Да, и касательно заглавия темы. Метод, конечно же, не "наименьшего спуска". Нам надо (при поиске минимума) спуститься как можно глубже. Он "наискорейшего спуска", когда мы, единожды определив направление, идём "по компасу" в этом направлении, не отвлекаясь на уточнение этого направления, покамест, идя так, мы не прекращаем спускаться, и лишь тогда ищем новое направление спуска. То есть "скорость" в том, чтобы идти, не отвлекаясь.
(Оффтоп)
Нечего думать, трясти надо!
Выигрыш по сравнению с методом градиента в том, что, хотя лишь первый шаг в наилучшем направлении, последующие не оптимальны, однако в большинстве случаев вычисление функции проще, чем производных её, при том, что производных надо вычислить n, так что несколько лишних шагов (вычислений функции) обходятся дешевле, чем одно вычисление градиента.
При практической реализации обычно, сделав шаг в выбранном направлении, проверяют, уменьшилась ли функция (задача, для определённости, на минимум), если да - делают ещё шаг (такой же или увеличивая его величину), если нет - уменьшают шаг до тех пор, пока не получат меньшее значение функции (если даже при очень малом шаге такого не достигается - то либо ошибка в вычислении градиента, либо функция крайне нехорошо себя ведёт, и градиентные методы, тем более использующие производные высшего порядка, для её оптимизации не годятся). Получив "вилку" из минимума между двумя большими значениями функции, уточняют его положение каким-то методом одномерной оптимизации и в этой точке опять вычисляют градиент, определяя новый маршрут для "похода по компасу".