2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему
 
 две задачки по теории вычислений
Сообщение26.07.2015, 17:30 


24/07/15
1
Доброго дня всем. Помогите, пожалуйста, решить две несложных задачки по теории вычислений.

1. Верно ли:
Если язык А принадлежит к NP классу, а нетривиальный язык Б к EXPTIME классу, то язык А полиномиально сводим к Б.

Я предложил такое решение - редукция недетерминистически за полиномиальное время проверяет принадлежность А к NP. Если да, то выводим на печать элемент, принадлежащий Б. Если нет, выводим на печать элемент, не принадлежащий Б. На что мне было сказано преподавателем, что редукция не может ничего решать недетерминистически.

2. Дан некоторый язык С. Язык Д определён как язык всех слов чётной длины в С. Показать, что существует такой NL полный язык С, что образованный из него язык Д не есть NL полный.

Единственный язык, который я знаю из книги Сипсера, что он NL полный - это язык PATH. Как можно показать, что все слова чётной длины из этого языка не есть NL полный язык, не знаю.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ 1 сообщение ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group