Итак, я взяла уравнение Шрёдингера
для частицы в потенциальной яме ширины 1(то есть рассматриваю случай, где потенциальная энергия равна 0). Хочу найти собственные значения и собственные функции для оператора Гамильтона.
Сначала я взяла одномерный случай (когда оператор Гамильтона просто вырожается в дифференциальный оператор)
Использую центрально-разностную аппроксимацию:
Составляю матрицу оператора:
На самом деле эту матрицу мне дал преподаватель, но не суть, я понимаю как она составляется.
Точное решение для дифференциального оператора -
Обсчитав эту матрицу я попадаю в это самое точное решение.
Теперь мне нужно сделать тоже самое, но для двумерного оператора Гамильтона (ну или просто для двумерного дифферециального оператора).
Верна ли эта аппроксимация?
Тогда матрица будет иметь вид (пример для матрицы 9х9)
В этом виде я не уверена...
Вот первые 5 собственных значений, которые я получила сгенерировав таким же образом и прогнав через QR матрицу 100х100:
0.0374
0.0967
0.1152
0.1641
0.1753
Похоже ли это на правду? Какое точное решение для двумерного дифференциального оператора?