Кстати, в этой задаче вполне можно применить стандартный способ нахождения матожидания путём интегрирования по этому самому треугольнику. Плотность распределения везде равна единице. Функция, то есть площадь, линейна, и график её представляет кусок плоскости, поднимающийся от нуля на основании до единицы в противоположной вершине. Нужный интеграл равен объёму тела, которое представляет собой пирамиду. А значит и интегрировать не нужно, а посчитать этот объём по школьной формуле.
Да, действительно, теперь я это вижу. Еще такой вопрос - линейная функция получается, когда мы представляем высоту как расстояние от нашей случайной точки до прямой, порождаемой отрезком
?