MM213

- 1. Пусть $H = \{h_1, h_2, \dots, h_f\}$, где f количество граней, а h_i число сторон i-й грани. Какое наименьшее значение может принимать f |H|?
- 2. Пусть g_i означает число i-угольных граней многогранника для каждого значения i. Могут ли все g_i не превышать 2?

Решение

1. Пусть максимальное число сторон k имеет k-угольная грань многогранника, тогда $H \subset \{3,4,...,k\}$, отсюда $|H| \leq k-2$, или

$$-|H| \ge 2 - k$$

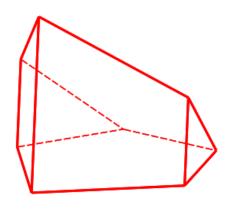
Так как по ребру соединяются ровно две грани, соответственно данный многогранник помимо k-угольной грани имеет как минимум k других граней, имеющих с исходной общее ребро, значит, $f \geq k+1$. Прибавляя полученное выше неравенство, получаем

$$f - |H| \ge 3$$

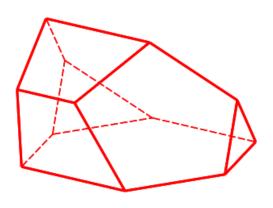
Значит, наименьшее значение f - |H| составляет 3. В том, что это значение достижимо, нет никаких сомнений, примерами могут служить тетраэдр, треугольная призма или четырёхугольная пирамида.

Ответ: 3.

2. Определим k так же, как в пункте 1. Можно найти многогранник такой, что $\forall i \in [3;k]$ $g_i=2$. Точнее, два многогранника, для k=5 и k=6.



Puc. 1. k = 5



Puc. 2. k = 6

Эстетическая оценка: 4 балла