=======MM193=======

ММ193 (6 баллов)

Решения принимаются, по крайней мере, до 26.09.14

Игроки Вася, Федя и Коля сыграли несколько паркий в настольный теннис навылет. Сколько партий мог сыграть Коля, если Вася сыграл а партий, а Федя - b? Примечания:

участники первой партии определяются жребием; для определенности будем считать, что $b \le a$.

Пусть Коля сыграл с партий.

Число партий n = (a + b + c)/2, следовательно, a + b + c чётно.

Каждый игрок может сыграть не больше n партий, a значит, выполняется условие треугольника (возможно, вырожденного): $a - b \le c \le a + b$.

Теперь учтём, что игра "на победителя".

Если игрок пропустил партию, то в следующей – участвует (если она проводится), поэтому он участвует не менее чем в (n-1)/2 партиях.

Всего получаем одно равенство и 5 неравенств:

$$(a + b + c) \mod 2 = 0,$$

 $b \le a,$
 $c \ge a - b,$
 $c \ge (a + b - 2)/3,$
 $c \le a + b,$
 $c \le 3b - a + 2.$

a∖b	0	1	2	3	4	5	6	7	8	9	10
1	1	0 - 2	1	1	1	1	1	1	1	ı	-
2	-	1 – 3	2 - 4	-	-	-	-	-	-	-	-
3	-	2	1 - 5	2 - 6	-	-	-	-	-	-	-
4	-	-	2 - 4	3 - 7	2 - 8	-	-	-	-	-	-
5	-	-	3	2 - 6	3-9	4 – 10	-			-	-
6	-	1	1	3 - 5	4 - 8	3 - 11	4 – 12	1	1	1	-
7	-	1	1	4	3 - 7	4 – 10	5 – 13	4 - 14	1	1	-
8	-	-	-	-	4 - 6	5 – 9	4 - 12	5 - 15	6 - 16	-	-
9	-	-	-	-	5	4 – 8	5 – 11	6 – 14	5 – 17	6 – 18	_
10	-	-	-	-	-	5 – 7	6 - 10	5 – 13	6 – 16	7 – 19	6 - 20

Таб. 1. Возможные значения a, b и c, если $n \ge 1$.

Если «несколько» партий означает, что $n \ge k$, то необходимо добавить ещё одно условие: $c \ge 2k - a - b$. Пусть 1 и 2 -ещё не «несколько». Положим k = 3. Тогда две первые строки таблицы изменятся.

a∖b	0	1	2	3	4	5	6	7	8	9	10
1	-	-	-	-	-	1	1	-	-	-	-
2	_	3	2 - 4	-	-	-	-	-	-	-	-

Таб. 2. Возможные значения a, b и c, если n ≥ 3 (первые две строки).

Other.
$$\max(a-b, (a+b-2)/3) \le c \le \min(a+b, 3b-a+2, 2k-a-b),$$
 $(a+b+c) \mod 2 = 0.$

Обобщение

Пусть в игре участвуют m человек. Пусть i-й участник сыграл x_i партий.

Тогда общее число партий $n = \frac{1}{2} \sum_{i=1}^{m} x_i$, то есть, $\sum_{i=1}^{m} x_i$ чётна.

Каждый игрок может сыграть не больше п партий, а значит, $x_i \leq \sum_{j=1}^m x_j$.

Пусть игра проводится "на победителя", и участники соблюдают очередь. Если игрок проиграл в партии, то следующие m-2 партии пропускает, а в следующей снова участвует (пока игра не закончится), поэтому он участвует не менее чем в (n-m+2)/(m-1) партиях.

Всего получаем одно равенство и систему неравенств:

$$\sum_{i=1}^m x_i = 0 \bmod 2.$$

$$x_i \le \sum_{\substack{j=1 \ j \ne i}}^m x_j$$
, i = 1..m.

$$x_i \ge \frac{\sum_{j=1}^{m} x_j - 2m + 4}{2m - 3}, i = 1..m.$$

$$x_i \ge 2k - \sum_{\substack{j=1 \ j \ne i}}^m x_j, \, \mathrm{i} = 1..\mathrm{m.} \; \mathrm{k}$$
 – ограничение снизу на число партий.

Многомерные таблицы рисовать сложно, но всё и без них понятно.