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This rather curious title doesn’t really explain what this set of notes is about. So
perhaps I should let you into the secret.

From [10] we know that each frame A has a point space

S = pt(A)

together with a surjective frame morphism

A
UA - OS

indexing the carried topology. The construction

A - S = pt(A)

is a contravariant functor from Frm to Top , and the composite construction

A - OS

is an endofunctor on Frm for which the indexing morphism U• is natural.
From [9] we know that each frame A has an assembly

NA

of all nuclei on A, and this itself is a frame. The construction

A - NA

is an endofunctor on Frm , and there is a natural epic embedding

A
nA - NA

of a frame into its assembly.
What happens when we compose these two endofunctors? We are going to look at the

two constuctions

A - OS - NOS

A - NA - OT

where
S = pt(S) T = pt(NA)
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are the two spaces. We will find that T depends only on S (and not on the parent frame
A), and there is a commuting triangle

OS
nOS- NOS

OT

σS

?

ιS
-

of frame morphisms. This is the fundamental triangle of the title.
Many of the results in this set of notes have been known, to some people, since the

middle 1980s or earlier. Many are taken from [3] or [6], and some were stated without
proof in [5]. However, the full well rounded picture has not been seen. Indeed, some of
the later published results have obscured this picture.
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1 The point space of an assembly

We know that the points of a frame can be viewed in three different ways.

(↑) As completely prime filters

(↔) As Frm -characters

(↓) As ∧-irreducible elements

The character view is always worth remembering, for it can make certain functorial as-
pects almost trivial. Certain people preach the obligatory use of completely prime filters.
However, almost always ∧-irreducible elements are easier to work with. Some of that came
through in [10], but now we have a really good example of the benefits of ∧-irreducible
elements.

Let us recall from [10] and [9] some of the general functorial properties.
Let A be an arbitrary frame. We fix this throughout this section. Let NA be its

assembly and, as above, let

S = pt(A) T = pt(NA)
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be the two points spaces each with its canonical topology. (Eventually we will furnish S
with a second topology.) We have the natural embedding

A
nA -

�
eA

NA

where eA is the right adjoint of nA. By Corollary 3.3 of [9] we have

eA(j) = j(⊥)

for each j ∈ NA. By Theorem 1.12 and just before of [10] this induces a continuous map

S � εA
T

where
εA = eA|T

that is
εA(`) = `(⊥)

for each ` ∈ T . In particular, this shows that p = `(⊥) is ∧-ireducible in A, and gives us
a clue as to what ` might be.

What are the points of NA? We are looking for those ` ∈ NA which are ∧-irreducible
in NA, that is `(⊥) 6= > (so that ` 6= >N ) and

j ∧ k ≤ ` =⇒ j ≤ ` or k ≤ `

for all j, k ∈ NA. There is a nice characterization of these nuclei.
We need to remember that

j ≤ wa ⇐⇒ j(a) ≤ a

for all a ∈ A and j ∈ NA. We use this several times in this section.
The following characterization appears as Lemma 3.2 of [3]. I give a slightly different

proof.

1.1 LEMMA. For each frame A and ` ∈ NA, the following are equivalent.

(i) ` is ∧-irreducible in NA.

(ii) ` is 2-valued, that is `(⊥) 6= > and these are the only values of `.

(iii) ` = wp where p = `(⊥) and this is ∧-irreducible in A.

Proof. (i)⇒(ii). Assuming (i) we show that

`(x) =

{> if x � p

p if x ≤ p

for each x ∈ A, where p = `(⊥). We know that p 6= >, for otherwise ` = >N .
For later, note that this is the only form a 2-valued nucleus can take.
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Given x ∈ A we have
ux ∧ vx = ⊥N ≤ `

so that either
ux ≤ ` or vx ≤ `

by (i). By evaluation at ⊥ and x these give

x ≤ `(⊥) = p or > ≤ `(x)

which leads to the suggested description of `.

(ii)⇒(iii). Assuming (ii) we first show that p = `(⊥) is ∧-irreducible.
We have p 6= >, otherwise ` = >N . For the ∧-irreducibility suppose

x ∧ y ≤ p

for some x, y ∈ A. Then

`(x) ∧ `(y) = `(x ∧ y) ≤ `(p) = p

and
`(x) ∈ {p,>} and `(y) ∈ {p,>}

since ` is 2-valued. If
`(x) = > = `(y)

then
> = `(x) ∧ `(y) ≤ p

which is not so. Thus, one of

x ≤ `(x) = p y ≤ `(y) = p

must hold, as required.
Next, knowing that p is ∧-irreducible, we show that

(x ⊃ p) =

{
p if x � p

> if x ≤ p

for each x ∈ A. To this end let
y = (x ⊃ p)

for arbitrary x ∈ A. Then
x ∧ y ≤ p

so that
x ≤ p or y ≤ p

to give
y = > or p ≤ y ≤ p

for the required result.
Finally, two uses of this formula gives

wp(x) = ((x ⊃ p) ⊃ p) =

{
(p ⊃ p) if x � p

(> ⊃ p) if x ≤ p

}
=

{
(p ⊃ p) if x � p

(> ⊃ p) if x ≤ p

}
= `(x)
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to show that ` = wp. Here the last step uses the observation above concerning the shape
of a 2-valued nucleus.

(iii)⇒(i). let p ∈ A be ∧-irreducible. We show that wp is ∧-irreducible in NA.
We have wp)⊥) = p 6= >, so that wp 6= >N . For j, k ∈ NA we have

j ∧ k ≤ wp =⇒ j(p) ∧ k(p) ≤ wp(p) = p =⇒ j(p) ≤ p or k(p) ≤ p =⇒ j ≤ wp or k ≤ wp

as required. �

This result can be rephrased as follows.

1.2 THEOREM. For a frame A let

S = pt(A) T = pt(NA)

with the canonical topologies. Then the two assignments

`(⊥) � `

S
� εA

$A
- T

p - wp

form an inverse pair of bijections. Furthermore, εA is continuous.

Proof. For convenience we let

ε = εA $ = $A

to avoid a bit of clutter.
By Lemma 1.1 we know that each p ∈ S gives a point

$(p) = wp ∈ T

and each ` ∈ T has the form
` = wp = $(p)

for some p ∈ S. In particular, for p ∈ S we have

(ε ◦$)(p) = ε(wp) = wp(⊥) = p

to show that ε ◦$ = idS. Similarly, for each ` = wp ∈ T we have

($ ◦ ε)(`) = $(l(⊥)) = $(p) = wp = `

to show that $ ◦ ε = idT .
We observed above that the general functorial properties ensure that ε is continuous.

A direct proof is worth seeing.
For each a ∈ A and j ∈ NA the two sets UA(a), UNA(j) given by

p ∈ UA(a) ⇐⇒ a � p j � wp ⇐⇒ wp ∈ UNA(j)

are respective typical open sets of S and T . We show that

ε←(UA(a)) = UNA(ua)
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for each a ∈ A.
For each p ∈ S we have

wp ∈ UNA(ua) ⇐⇒ ua � wp

⇐⇒ a ∨ p � p

⇐⇒ a � p ⇐⇒ ε(wp) = p ∈ UA(a)

to give the required result. �

This is looking good isn’t it. But now comes the stumble. In general the assignment
$ is not continuous. We can easily see what the problem is, and so conjure up a solution.

A typical open set of T = pt(NA) has the form

UNA(j)

for some j ∈ NA. Since
j =

∨{uj(a) ∧ va | a ∈ A}
we have

UNA(j) =
∨{UNA(uj(a)) ∧ UNA(va) | a ∈ A}

and hence the sets
UNA(ua) UNA(va)

(for varying a ∈ A) form a subbase of OT . Observe that these two sets are complementary
in T , so both are clopen.

The calculation in the proof of Theorem 1.2 gives

$←(UNA(ua)) = UA(a)

and hence
$←(UNA(va)) = UA(a)′

which need not be open in S.
There is an obvious, rather crude, way to solve this problem. We furnish S with a new

topology by declaring that each member of the old topology OS should become clopen.
Surprisingly, this works.

1.3 DEFINITION. For an arbitrary space S, with topology OS, the front topology OfS is
the smallest topology on S for which each U ∈ OS is clopen.

The front space fS is the set S furnished with OfS. �
If you think that this construction looks a bit stupid (because, surely, fS is discrete)

don’t worry. You are not the first to make that mistake, and you won’t be the last. We
take a closer look at the construction in Section 2. For now, let’s see what we get with it.

1.4 THEOREM. For a frame A let

S = pt(A) T = pt(NA)

where each carries the canonical topology. Then the two assignments

`(⊥) � `
fS

� εA

$A
- T

p - wp

form an inverse pair of homeomorphisms, where now fS carries the front topology.
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Proof. By Theorem 1.2 the two assignments form an inverse pair of bijections, so it
suffices to show that each is continuous.

As shown at the end of Section 1 we know that the sets

UNA(ua) UNA(va)

for a ∈ A form a subbase of OT . Also from there we have

$←(UNA(ua)) = UA(a) ∈ OfS $←(UNA(va)) = UA(a)′ ∈ OfS

to show that $ is continuous. More or less the same calculation shows that

ε←(UA(a)) = UNA(ua) ε←(UA(a)′) = UNA(va)

and hence ε is continuous. �

This result shows that once we know the point space S of a frame A, then we also
know the point space of its assembly NA. We may take it to be fS. If S is T1 then fS
is discrete (since each singleton becomes clopen). For certain weaker separated space fS
need not be discrete.

Observe that we also know the point space of the second assembly N2A. It is ffS,
the front space of the front space of S. This is always discrete. There after the higher
level assemblies N3A, N4A, . . . all have the same point space, namely S with the discrete
topology.

What do you think this means?

2 The front space

Each space S carries its nominated topology OS, but the set S may still carry other
topologies. In particular, we can enlarge OS by declaring that we want certain subsets
of S to become open, and then generating a new topology. The front topology is a
rather crude examples of this idea. This section is a self contained account of the front
construction and its various ramifications.

We begin with a repeat of Definition 1.3.

2.1 DEFINITION. For an arbitrary space S, with topology OS, the front topology OfS is
the smallest topology on S for which each U ∈ OS is clopen.

The front space fS is the set S furnished with OfS. �

The front topology is sometime called the Skula topology. We will explain the name
‘front’ after Lemma 2.3.

By construction we have an insertion

OS ⊂ - OfS

for which each U ∈ OS becomes complemented (that is, clopen) in OfS. Thus the
insertion solves the complementation problem for OS (but perhaps not universally). This
indicates that in some way the front topology OfS is connected with the assembly NOS.
We return to this observation in Section 3.
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But first, we need some information about OfS.
The set S carries two topologies

OS OfS

the parent topology on the left and the produced topology on the right. To distinguish
between these we speak of

open closed f -open f -closed

subsets of S. We write
(·)◦ (·)− (·)� (·)=

for the corresponding

interior closure f -interior f -closure

operations on PS.
By construction the family of sets

U ∩X (U ∈ OS, X ∈ CS)

forms a base for the topology OfS. There is a variant of this which is sometimes useful.

2.2 LEMMA. For each p ∈ S the family

U ∩ p− (p ∈ U ∈ OS)

forms a base for the f-open neighbourhoods of p. In other words, for each

p ∈ E ∈ OfS

we have
p ∈ U ∩ p− ⊆ E

for some U ∈ OS.

Proof. For U ∈ OS and X ∈ CS we have

U ∩X =
⋃ {U ∩ p− | p ∈ U ∩X}

which leads to the required result. �

A similar idea gives the following.

2.3 LEMMA. For each subset E ⊆ S we have

p ∈ E� ⇐⇒ p ∈ (E ∪ p−′)◦ p ∈ E= ⇐⇒ p ∈ (E ∩ p−)−

for each point p ∈ S.
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Proof. Consider any point p ∈ E�. By Lemma 2.2 we have

p ∈ U ∩ p− ⊆ E

for some U ∈ OS. But now U ⊆ E ∪ p−′ so that

p ∈ U ⊆ (E ∪ p−′)◦

for one implication.
Conversely, if

p ∈ U = (E ∪ p−′)◦

then
p ∈ U ⊆ E ∪ p−′

so that
p ∈ U ∩ p− ⊆ E

which leads to the converse implication.

The equivalence for (·)= follows by a manipulation of complements. �

The right hand equivalence is the reason for the name ‘front’, since to determine
whether or not a point p is in a front closure only the points in front of p (that is in p−)
need be considered.

At first sight the front space fS looks a rather silly idea. Surely, it is just a discrete
space. Not quite. Here is an example to indicate that the front construction can have
some hidden complexities.

2.4 EXAMPLE. Consider the set R of reals.
Let OlR be the family of all intervals

(−∞, a)

for a ∈ R together with ∅ and R. A few moments thought shows that OlR is a topology
on R. Note that this space is T0 but is not T1.

The front topology
OrR = Ol

fR

is generated by all the intervals
[a, b)

for a ≤ b from R. This is T3, but it is certainly not discrete.
Let OmR be the metric topology on R. This is generated by all he intervals

(a, b)

for a ≤ b from R. Observe that

OlR ⊆ OmR ⊆ OrR

to suggest that the front topology might not be as simple as it first seems. �

9



Given a space S we may form

S fS ffS fffS · · ·
by repeated use of the front construction. How different can these be?

Suppose S is T1, that is ‘points are closed’. By Lemma 2.2 we see that fS is discrete.
In fact, there is a slightly weaker separation property which ensures that fS is discrete.
We look at this in a moment.

By Example 2.4 there is a space S where S 6= fS and fS is not discrete. For that
example we see that ffS is discrete, and so S, fS, ffS can be distinct. We are going to
show that this is as far as we can go. For every space S the topology OffS is boolean and
fffS = ffS. In fact, if S is T0 then ffS is discrete.

2.5 DEFINITION. A space S is TD if for each p ∈ S we have

U ∩ p− = {p}
for some U ∈ OS. �

In other words, by Lemma 2.2, a space is TD precisely when fS is discrete. A few
moment’s thought gives

T1 =⇒ TD =⇒ T0

and Example 2.4 shows that the right hand implication is not an equivalence. An even
simpler example shows that the left hand implication is not an equivalence.

2.6 EXAMPLE. Let S be a partially ordered set (with at least two elements, one above
the other). Let

OS = ΥS

be the family of all upper section of S. This is a topology, the Alexandroff topology, on
S. For each p ∈ S the principal sections

↑p ↓p
are, respectively,

open closed

subsets of S. In particular, we have p− = ↓p so that S is not T1 since it has at least one
non-closed point. Also

↑p ∩ p− = {p}
to show that S is TD. �

Notice that siepinski space 2 is an example of a TD space that is not T1.
To show that fffS = ffS we need a bit of preparation.

2.7 DEFINITION. For each p ∈ S let

p− =
⋂
{X ∈ CS | p ∈ X} p◦ =

⋂
{U ∈ OS | p ∈ U} p	 = p◦ ∩ p−

to obtain three sets containing p. Thus p− is just the closure of {p}, but p◦ need not be
open. We call p◦ the hull of p, and we call p	 the monad of p. �
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Almost trivially we have
p ∈ q− ⇐⇒ q ∈ p◦

for p, q ∈ S, and a simple exercise shows that the four conditions

p− = q− p◦ = q◦ p	 = q	 p ∈ q	

are equivalent. Furthermore, we find that

S is T1 ⇐⇒ (∀p ∈ S)[p− = {p}]
S is T0 ⇐⇒ (∀p ∈ S)[p	 = {p}]

where the first is the standard ‘points are closed’ characterization of T1. Later we will use
these sets to generalize the notion of an isolated point.

These gadgets are concerned with the parent topology on S. There are similar gadgets
for the f -topology. Fortunately, things don’t get too complicated.

2.8 LEMMA. For each point p ∈ S, the monad p	 is the f -closure, the f -hull, and the
f -monad of p.

Proof. For the given point p we first show that p� ⊆ p=. To this end consider any
q ∈ p� and, by way of contradiction, suppose q /∈ p=. We have q ∈ p=′ and the set p=′ is
f -open, so that Lemma 2.2 gives

q ∈ U ∩ q− ⊆ p=′

for some q ∈ U ∈ OS. But now

p ∈ p= ⊆ U ′ ∪ q−′

and U ∪ q−′ is f -clopen, to give

q ∈ p� ⊆ U ∪ q−′

which leads to the required contradiction.
This shows that, in fact, the f -hull p� is also the f -monad of p.
Since

p	 = p◦ ∩ p−

is an intersection of f -closed sets we have

p� ⊆ p= ⊆ p	

for the given point p. It remains to tighten these inclusions.
Using Lemma 2.2 we have

p� =
⋂ {U ∩ p− | p ∈ U ∈ OS} =

⋂ {U | p ∈ U ∈ OS} ∩ p− = p◦ ∩ p− = p	

for the required result. �

This result shows that
p= = p	 = p�

for each point p of a space. Furthermore, p= is the f -monad of p. This has a consequence
for the second front space.
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2.9 LEMMA. Suppose p◦ = p− for each point p of a space S. Then ffS = fS.

Proof. By Lemma 2.8 we have

p= = p◦ ∩ p− = p−

for each p ∈ S.
Consider any F ∈ OffS. We show that F is f -open. To this end consider any p ∈ F .

We show that p ∈ F �.
By Lemma 2.2 applied to fS we have

p ∈ E ∩ p= ⊆ F

for some E ∈ OfS. But now by Lemma 2.2 applied to S we have

p ∈ U ∩ p− ⊆ E

for some U ∈ OS. Since p= = p− this gives

p ∈ U ∩ p− ⊆ E ∩ p= ⊆ F

and hence p ∈ F �, as required. �

We now apply this result to fS. By Lemma 2.8 we know that the f -hull and the
f -closure of a point are the same. Thus we have the following.

2.10 COROLLARY. For each space S we have fffS = ffS.

In the remainder of this section we use these ideas to make precise the informal notion
of a nearly scattered space. You might think that this has nothing to do with frames and
assemblies, but you will see the relevance in Section 5.

Recall that a space is scattered if each of its non-empty closed sets has at least one
isolated point. In some ways we want to think of such a space as rather pathological; we
can’t creep up on an isolated point. However, this official version doesn’t quite capture
this informal idea.

Consider a large indiscrete space (where ‘large’ can mean ‘having at least two points’).
Surely this space is pathological, but it doesn’t have any isolated points. Every non-empty
open set contains every point.

The problem is that the official version of ‘isolated point’ tacitly assumes a modicum
of separation. Here we re-work the idea to get round this problem.

Why are we doing this here? Because in Section 5 we show that for a space S we have

NOS is spatial ⇐⇒ S is weakly scattered

where being weakly scattered is an appropriate refinement of being scattered that comes
out of our analysis.

2.11 DEFINITION. Let S be a space, let X ∈ CS be a closed set of S, and let p ∈ X. We
say p is

(i) an isolated point (ii) a detached point (iii) a loose point
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of X if there is some U ∈ OS such that

(i) p ∈ X ∩ U ⊆ {p} (ii) p ∈ X ∩ U ⊆ p	 (iii) p ∈ X ∩ U ⊆ p−

holds, respectively. Let

I(X) D(X) L(X)

be these respectively sets of points. �

Trivially we have
I(X) ⊆ D(X) ⊆ L(X) ⊆ X

and I(X) is just the usual set of isolated points of X.
The first part of the next result is essentially Lemma 1.4 of [6].

2.12 LEMMA. For each space S and closed set X ∈ CS we have

p ∈ I(X) ⇐⇒ p ∈ D(X) and p	 = {p}
p ∈ D(X) ⇐⇒ p ∈ L(X) and p	 ∈ OfS

for each point p ∈ S.
Furthermore, if S is T0 then L(X) is a discrete subspace of X (and S).

Proof. The two equivalences are almost trivial. Let’s show that L = L(X) is a discrete
subspace when S is T0.

Consider any p ∈ L. Thus

p ∈ L ∩ U ⊆ X ∩ U ⊆ p−

for some open set U . We show that L ∩ U = {p}. To this end consider any q ∈ L ∩ U .
Then

q ∈ X ∩ V ⊆ q−

for some open set V . Since q ∈ V ∩ p− we have p ∈ V , and hence p ∈ q−. This gives
p− = q−, and hence p = q since S is T0. �

Notice that if S is T0 (so that p	 = {p}) then I(X) = D(X). The slightly stronger
separation property TD (which is still weaker than T1) ensures that I(X) = L(X). On
the whole it does no harm to restrict our attention to T0 spaces, but we don’t want to
assume anything stronger.

The next result is an improved version of Lemma 5.1 of [7].

2.13 LEMMA. For each space S we have

L(X) is f -closed D(X) is f -clopen D(X) = L(X)�

for each closed set X ∈ CS.
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Proof. Fix a closed set X ∈ CS and for convenience let L = L(X) and D = D(X).
Consider any p ∈ L=. Thus p ∈ (L ∩ p−)−, and hence both

(i) p ∈ L− ⊆ X (ii) L ∩ p− 6= ∅
hold. From (ii) there is some q ∈ L ∩ p−, and hence

(iii) q ∈ p− (iv) q ∈ X ∩ U ⊆ q−

for some open set U . From (iv) we have q ∈ U , and hence (iii) gives p ∈ U , so that (i)
gives p ∈ X ∩ U . But (iii) gives q− ⊆ p−, so that

p ∈ X ∩ U ⊆ q− ⊆ p−

by (iv), to give p ∈ L. Thus L= ⊆ L, as required.
A similar proof shows that D is f -closed. We use p	 in place of p−, and (iii) becomes

q ∈ p	, to give q	 = p	.
To complete the proof we show that D = L�.
Consider any p ∈ D. We have

p ∈ X ∩ U ⊆ p	

for some open set U . For each q ∈ X ∩ U we have q ∈ p	, and hence q	 = p	, so that

q ∈ X ∩ U ⊆ q	

and hence q ∈ D. In fact, this shows that

p ∈ X ∩ U ⊆ D ⊆ L

and hence p ∈ L�. Since this holds for each p ∈ D, we have D ⊆ L�.
Conversely, consider any p ∈ L�. We have

p ∈ U ∩ p− ⊆ L

for some open U , and so
p ∈ p	 ⊆ U ∩ p− ⊆ L

holds. Consider any q ∈ U ∩ p−. We have q ∈ L and hence

q ∈ X ∩ V ⊆ q−

for some open V . But now q ∈ V and q ∈ p−, so that p ∈ X ∩ V ⊆ q−, to give q− = p−,
and hence q	 = p	. In fact, this shows that p	 = U ∩ p−. Finally, since p ∈ L we have

p ∈ X ∩W ⊆ p−

for some open W , and hence

p ∈ X ∩ U ∩W ⊆ U ∩ p− = p	

to show p ∈ D, as required. �

Using these ideas we can refine the notion of a scattered space. Here we require just
one such refinement, but it is worth looking at the general method.
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2.14 DEFINITION. Let S be a space, and let

p - p�

be any operation from points to subsets such that

p ∈ p� ⊆ p−

for each p ∈ S. We say such an operation is suitable
(a) For each closed set X ∈ CS we use

p ∈ �(X) ⇐⇒ (∃U ∈ OS)[p ∈ X ∩ U ⊆ p�]

to extract a subset �(X) of X.
(b) We say S is �-scattered if

�(X) = ∅ =⇒ X = ∅

holds for each X ∈ CS. �

Notice the restriction
p ∈ p� ⊆ p−

on a suitable operation (·)�. We use this several times.
We have three particular examples

p� {p} p	 p−

of suitable operations, and these give the subsets

�(X) I(X) D(X) L(X)

of X respectively. In particular, a space is {·}-scattered if it is scattered in the usual
sense. In [6] the

(·)	-scattered (·)=-scattered

spaces were termed
dispersed corrupt

respectively. Here we will use the terminology of [3].

2.15 DEFINITION. A space is weakly scattered precisely when it is (·)=-scattered, that is
when each non-empty closed set has at least one loose point. �

There is another characterizations of being nearly scattered. To obtain that we use
the following observation.

2.16 LEMMA. Let (·)� be a suitable operation on the space S. We have

p ∈ �(X) ⇐⇒ p ∈ X and (∃U ∈ OS)[∅ 6= X ∩ U ⊆ p�]

for each X ∈ CS and p ∈ S.
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Proof. The implication ⇒ is trivial, so it suffices to show the converse.
Consider p ∈ X ∈ CS and suppose

q ∈ X ∩ U ⊆ p�

for some U ∈ OS and q ∈ S. Since

q ∈ U ∩ p� ⊆ U ∩ p−

we have p ∈ U . 1 Thus
p ∈ X ∩ U ⊆ p�

as required. �

With this we can obtain a useful characterization of being �-scattered.

2.17 LEMMA. A space S is �-scattered precisely when

X = �(X)−

for each X ∈ CS.

Proof. If X = �(X)− then

�(X) = ∅ =⇒ X = ∅
to give us one of the required implications.

For the other suppose S is �-scattered, and consider

Y = (X −�(X)−)− = (X ∩�(X)−′)−

for some X ∈ CS. We require Y = ∅.
By way of contradiction, suppose Y 6= ∅. Since S is �-scattered we have �(Y ) 6= ∅,

to give
p ∈ Y ∩ V ⊆ p�

for some V ∈ OS and p ∈ S. Remembering that Y is a closure this gives some

q ∈ X ∩�(X)−′ ∩ V ⊆ p�

where, of course,
U = �(X)−′ ∩ V

is open. By Lemma 2.16 this gives p ∈ �(X), and hence

q ∈ p� ⊆ p− ⊆ �(X)−

so that
q ∈ �(X)− ∩�(X)−′

which is the contradiction. �

Remembering Lemma 2.12 we have the following instance of Lemma 2.17.

1The following argument should be done earlier.
If p /∈ U then p ∈ U ′ so that p− ⊆ U ′ to give U ⊆ p−′, and hence U ∩ p− ⊆ p−′ ∩ p− = ∅.
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2.18 COROLLARY. A space S is weakly scattered precisely when L(X)− = X for each
close set X.

A T0 space is weakly scattered precisely when each closed set has a discrete dense
subset.

I said earlier that the official notion of isolated point tacitly assumes a modicum of
separation. I can now make this more precise. It is convenient to compare the notions of
scattered and weakly scattered. Thus for a space S these are defined by

(Sct) (∀X ∈ CS)[I (X) = ∅ =⇒ X = ∅]
(WSc) (∀X ∈ CS)[L(X) = ∅ =⇒ X = ∅]

respectively. Recall also that

TD (∀p ∈ S)(∃U ∈ OS)[U ∩ p− = {p}]

gives the separation property between T0 and T1.
We use these in the proof of the following.

2.19 LEMMA. A space S is scattered precisely when it is TD and weakly scattered.

Proof. Suppose first that S is scattered. Since

I(X) ⊆ L(X)

for each x ∈ CS, we see that S is weakly scattered. To show that S is TD consider any
p ∈ S and let X = p−. Since this is non-empty, it has an isolated point, so that

U ∩ p− = {q}

for some U ∈ OS and q ∈ S. But now p ∈ U (for otherwise p ∈ U ′ so that q ∈ p− ⊆ U ′,
which is not so) and hence

p ∈ U ∩ p− = {q}
to give p = q for the required result.

Conversely suppose that S is TD and weakly scattered, and consider any non-empty
X ∈ CS. We must find an isolated point of X. Since S is weakly scattered it certainly
has a loose point, so that

p ∈ X ∩ U ⊆ p−

for some p ∈ X and U ∈ OS. Since S is TD we have

V ∩ p− = {p}

for some V ∈ OS. But now

p ∈ X ∩ U ∩ v ⊆ V ∩ p− = {p}

to show that p is isolated in X. �

It is now time to get back to the central topic of these notes.
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3 The fundamental triangle

By construction, for each space S the insertion

OS ⊂ - OfS

solves the complementation problem for OS (but perhaps not universally). Hence, by
Theorem 5.4 of [9], there is a commuting triangle

OS - NOS

OfS

σS
?-

for some unique frame morphism σS. This triangle first appeared in [5]. In this sec-
tion we describe and analyse the morphism σS . Later we will determine when σS is an
isomorphism.

In due course we show that the following is the morphism we want.

3.1 DEFINITION. Let S be an arbitrary space, For a nucleus j ∈ NOS let σS(j) be the
subset of S given by

p ∈ σ(j) ⇐⇒ p ∈ j(p−′)

(for p ∈ S). �

As usual we often write σ for σS when there is only one space around. For instance
we do that now.

Almost trivially
σ(⊥NOS) = ∅ σ(>NOS) = S

and
σ(j ∧ k) = σ(j) ∧ σ(k)

for j, k ∈ NOS. Thus we see that σ is a ∧-semilattice morphism. To show that it is a
frame morphism we exhibit its right adjoint. For this we use the spatially induced nuclei.
These are discussed in Section 4 of [8], but we also review the pertinent facts here.

3.2 DEFINITION. For each space S and subset E ⊆ S we set

[E](U) = (E ∪ U)◦

for each U ∈ OS, to obtain an nucleus [E] on OS.
The spatially induced nuclei on OS are those of the form [E] for some E ⊆ S. �

Of course, we need to check that [E] is a nucleus, but that is straight forward and is
done in [8]. Remember also why these nuclei are spatially induced.

Each continuous map

T
φ - S
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to the space S induces a frame morphism and its adjoint

OS
φ∗ -

�
φ∗

OT

where
φ∗(U) = φ←(U) φ∗(W ) = φ→(W ′)−′

for each U ∈ OS and V ∈ OT . This morphism has a kernel

φ∗ ◦ φ∗ = [E]

where E = T − φ→(S), the complement of the range of φ.
The complements in the formulas above have led to some confusion in the literature,

and some rather silly terminology.
The topology OS always carries its spatially induced nuclei. In general, it can carry

many more nuclei, which is one reason why an analysis of the assembly NOS is useful.
There are some spaces S for which every nucleus on OS is spatially induced. Later, in
Section 5 we will give a characterization of these spaces, and we will see that they have a
modicum of pathology.

Each subset E ⊆ S gives a spatially induced nucleus, but different subsets can give
the same nucleus. This is where the front topology is useful.

3.3 LEMMA. For each space S we have

[E] ≤ [F ] ⇐⇒ E� ⊆ F �

for all E, F ⊆ S.

Proof. Suppose [E] ≤ [F ] and consider any p ∈ E�. We have

p ∈ (E ∪ p−′)◦ = [E](p−′) ⊆ [F ](p−′) = (F ∪ p−′)◦

and hence p ∈ F �, as required.
Conversely, suppose E� ⊆ F � and consider

V = [E](U) = (E ∪ U)◦ ⊆ E ∪ U

so that we required V ⊆ F ∪ U . But

V ∩ U ′ ⊆ E

and V ∩ U ′ is f -open to give

V ∩ U ′ ⊆ E� ⊆ F � ⊆ F

for the required result. �

This result has a couple of simple consequences which go back to Lemma 14 of [1].
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3.4 COROLLARY. For each space S we have

[E] = [F ] ⇐⇒ E� = F � [E] = [E�]

for all E, F ⊆ S.

Proof. Two uses of Lemma 3.3 gives the left hand equivalence, and then the observation
E� = E�� gives the right hand equality. �

This last result show that we have an injection

OfS - NOS

E - [E]

from the front topology of S to the assembly NOS. A simple calculation verifies that

[E] ∧ [F ] = [E ∩ F ]

for E, F ∈ OfS, and trivially we have

[S] = >NOS

to give the following.

3.5 LEMMA. For each space S the assignment

OfS
[ · ]- NOS

is a {∧,>}-embedding.

Perhaps you have already guessed that this assignment [ · ] is the right adjoint of the
morphism σS. To prove that we need a bit of preparation.

3.6 LEMMA. For each space S we have

σS([E]) = E�

for each subset E ⊆ S.

Proof. Consider any point p ∈ σ([E]). We have

p ∈ [E](p−′)

and hence
p ∈ U ⊆ E ∪ p−′

for some U ∈ OS. This gives
p ∈ U ∩ p− ⊆ E

and hence p ∈ E�.
Conversely, if p ∈ E� then

p ∈ U ∩ p− ⊆ E

for some U ∈ OS, which leads to p ∈ [E](p−′), and hence p ∈ σ([E]). �

With this we can complete the proof that σS is a frame morphism, and get a bit more
information.
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3.7 THEOREM. For each space S the assignments

NOS
σS -

�
[ · ]

OfS

form a frame morphism and its right adjoint, σS a [·]. Furthermore, we have σS ◦[·] = id
and the right adjoint is injective.

Proof. We know that both σ and [ · ] are ∧-semilattice morphisms, with [ · ] injective,
and Lemma 3.6 gives σ ◦ [ · ] = id . Thus it remains to show that

σ(j) ⊆ E ⇐⇒ j ≤ [E]

for each j ∈ NOS and E ∈ OfS.
Suppose first that σ(j) ⊆ E. Then, for each U ∈ OS and p ∈ S

p ∈ j(U) =⇒ p ∈ j(U)− U or p ∈ U

=⇒ p ∈ σ(j) ⊆ E or p ∈ U =⇒ p ∈ E ∪ U

so that
j(U) ⊆ E ∪ U

and hence
j(U) ⊆ [E](U)

as required.
Conversely, if j ≤ [E], then

σ(j) ⊆ σ([E]) = E� = E

using Lemma 3.6. �

By Lemma 3.6 we see that the morphism σS is surjective but, as we will see, it need
not be injective. We characterize when this is the case (and hence σS is an isomorphism)
in Section 5.

4 The assembly diagram

We have produced various functorial and natural facets. Let’s gather these together in
one place.

Each frame A induces a diagram in Frm as shown in Table 1. Here, as usual, we have

S = pt(A) T = pt(NA)

and all the arrows have been constructed earlier.
We know that cell (1) commutes. This is the functoriality of N(·) and the naturality

of n•.
Cell (2) commutes, for this is just the fundamental triangle of S.
We will show that cell (3) commutes. To do that we remember an earlier observation

and that nA is epic,
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A
nA - NA

(1)

OS

UA

?
nOS

- NOS

N(UA)

�

(2) (3)

OfS

σS

?

ε←A
-

ιS

⊂

-

OT

UNA

?

Table 1: The assembly diagram of a frame

Let n = nA. We know that this morphism induces a commuting square

A
n - NA

S � n? T

OS

UA

?

n←?
- OT

UNA

?

where n? = n∗|T with n a n∗. What is n←? ? Here we must be a bit careful with our
current notation. We do not have

n←? = εA

for εA has silently changed its identity! Perhaps you can locate where this happened.
We know that

fS � εA
T

is a homeomorphism, and so εA is also continuous to target S. In other words the
continuous map n? is

S � %S fS � εA
T

where %S is the identity function on S viewed as a continuous map. From this we see that

n←? = ε←A ◦ %←S = ε←A ◦ ιS

since a few moment’s thought gives %←S = ιS.
This shows that the outer cell of the diagram of of Table 1 commutes.
Using this information we have

UNA ◦ nA = ε←A ◦ ιS ◦ UA = ε←A ◦ σS ◦ nOS ◦ UA = ε←A ◦ σS ◦N(UA) ◦ nA
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and hence
UNA = ε←A ◦ σS ◦N(UA)

since nA is epic.
It can be checked that this whole diagram is natural form variation of A along a frame

morphism. Further information about this can be found in Section 4 of [4]

5 Totally spatial frames

Each frame A has a point space S = pt(A) together with a surjective frame morphism

A
UA - OS

indexing the topology. As with any frame morphisms, this morphism has a kernel s ∈ NA
which, by Lemma 1.9 of [10] in this case, is given by 2

s(a) =
∧{p ∈ S | a ≤ p}

for each ∈ A. This assumes that we view the points of S as the ∧-irreducible elements
of A, and the infimum is computed in A. Consider any j ∈ NA. This gives us a pair of
quotients

A
j∗ - Aj

Uj - OSj

where Sj = pt(Aj) and Uj is the associated indexing morphism. We wish to describe the
kernel sj ∈ NA of this composite morphism.

To do that we must first locate Sj, the set of points of Aj . Remember that each such
point is determined by a character

Aj
- 2

of Aj , and this gives a character

A
j∗ - Aj

- 2

of A. Thus Sj ⊆ S. This gives us some information about Aj , but, as usual, it is easier
to deal with ∧-irreducible elements.

5.1 LEMMA. For each nucleus j ∈ NA on a frame A, we have

Sj = S ∩ Aj

where S = pt(A) and Sj = pt(Aj).

2The earlier notation of [10] should be changed to match this better one.
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Proof. Consider p ∈ Sj . Thus p ∈ Aj and is ∧-irreducible in Aj. But now, for x, y ∈ A,
we have

x ∧ y ≤ p =⇒ j(x) ∧ j(y) ≤ j(p) = p =⇒ x ≤ j(x) ≤ p or y ≤ j(y) ≤ p

to show that p is ∧-irreducible in A. Thus

Sj ⊆ S ∩ Aj

and the converse inclusion is even easier. �

With this we can describe the kernel of the composite map.

5.2 LEMMA. For each frame A and j ∈ NA, the kernel sj of the morphism

A
j∗ - Aj

Uj - OSj

(where Sj = pt(Aj)) is given by

sj(a) =
∧{p | p ∈ S ∩Al and a ≤ p}

for each a ∈ A.

Proof. The composite morphism is

A
j∗ - Aj

Uj - OSj

a - j(a) - Uj(j(a))

where Uj is the indexing map of Aj . By Corollary 3.13 of [8] we have

x ≤ sj(a) ⇐⇒ Uj(j(x)) ⊆ Uj(j(a))

for a, x ∈ A. This right hand side unravels to

(∀p ∈ Sj)[j(x) � p =⇒ j(a) � p]

that is
(∀p ∈ S ∩ Aj)[j(a) ≤ p =⇒ j(x) ≤ p]

using Lemma 5.1. For p ∈ Aj we have

x ≤ p =⇒ j(x) ≤ j(p) = p

so that
(∀p ∈ S ∩ Aj)[a ≤ p =⇒ x ≤ p]

is a further unravelling of the right hand side. This latest version is just

x ≤ ∧{p | p ∈ S ∩ Aj and a ≤ p}
which gives the required result. �

Notice that when j = idA we have sidA
= s where s is the nucleus described at the

beginning of this section.
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5.3 DEFINITION. A frame A is totally spatial if Aj is spatial for each j ∈ NA. �

By considering the particular case j = idA we see that each totally spatial frame is
spatial. What kind of spaces arise in this way. In due course we will see that they are
precisely the weakly scattered spaces of Definition 2.15. These spaces also have a more
fundamental property.

Each frame A has an assembly NA which has a point space

NA - Opt(NA)

which has a kernel. This is some second level nucleus S ∈ N2A. We know that

pt(NA) = {wp | p ∈ S}
where S = pt(A). Thus, using the description of s applied to NA, we have

S(j) =
∧{wp | p ∈ S and j ≤ wp}

for each j ∈ NA. This infimum is computed in NA. In other words, it is computed
pointwise.

We carry these various notations into the next result.

5.4 THEOREM. For each frame A and nucleus j ∈ NA we have

S(j) = sj

where S ∈ N2A and sj ∈ NA are as given above.

Proof. For each j ∈ NA and a ∈ A we have

S(j)(a) =
∧{wp(a) | p ∈ S and j ≤ wp}

sj(a) =
∧{ p | p ∈ S ∩Aj and a ≤ p}

so it suffices to compare the two right hand sides. We simplify the right hand side for
S(j)(a).

First of all we have
j ≤ wp ⇐⇒ j(p) = p ⇐⇒ p ∈ Aj

so that
S(j)(a) =

∧{wp(a) | p ∈ S ∩Aj}
for the first step of the simplification.

Secondly, as in the proof of Lemma 1.1, we have

wp(a) =

{> if a � p

p if a ≤ p

so we may omit those p ∈ S ∩ Aj where a � p. Thus

S(j)(a) =
∧{p | p ∈ S ∩ Aj and a ≤ p}

as required. �

With this we can obtain the equivalence (1) ⇔ (2) of Theorem 3.4 of [3]. We look at
the other equivalents of that result in Section 6.
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5.5 THEOREM. A frame has a spatial assembly precisely when it is totally spatial.

Proof. A frame A has a spatial assembly precisely when the associated second level
nucleus S is idNA. By Theorem 5.4 this occurs precisely when

sj = S(j) = j

for each j ∈ NA. In other words, when each quotient Aj is spatial. �

In Theorem 5.8 below we look at a different proof of this result which gives us different
information about the situation.

Consider an arbitrary space S. The quotient morphism

OS
σS - OfS

is canonically equivalent to the spatial reflection

NOS
UNOS- O(pt(NOS))

of the assembly NOS! This can be seen by considering the particular case A = OS in the
assembly diagram Table 1. For this case the cell (1) collapses since UA is just equality.
You have to be a bit careful with this. The S there is not the S here. There it is the
point space of OS for our S, in other words the sober reflection of our space S.

This shows that the assembly NOS is spatial precisely when the morphism σS is
injective, and hence is an isomorphism. How can we test for that condition? For any
frame A each nucleus is an infimum of wa-nuclei. That is true for A = OS, so perhaps
we should see what σS does to these particular nuclei. This is where the loose points of
a closed set come into play.

The next result first appeared as Theorem 6.1 of [7].

5.6 LEMMA. For each space S and closed set X ∈ CS we have

σS(wE) = L(X)′

where E = X ′.

Proof. Consider any point p ∈ S. We show that

(i) p ∈ L(X) (ii) p ∈ X ∩ U(p) (iii) p /∈ σS(wE)

are equivalent where
U(p) = (E ∪ p−)◦

is the open set attached to p.

(i)⇒(ii). Assuming (i) we have

p ∈ X ∩ V ⊆ p−

for some V ∈ OS. The right hand inclusion gives

V ⊆ E ∪ p−
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so that V ⊆ U(p), and hence

p ∈ X ∩ V ⊆ X ∩ U(p)

as required.

(ii)⇒(iii). By the definition of σS we have

p ∈ σS(wE) ⇐⇒ p ∈ wE(p−′)

so it suffices to unravel the right hand side.
We have

(p−′ ⊃ E) = (p−∪)◦ = U(p)

so that
wE(p−′)′ = (U(p) ⊃ E)′ = (U(p)′ ∪ E)◦′ = (X ∩ U(p))−

from which we obtain the required implication.

(iii)⇒(i). Assuming (iii) we have

p ∈ (X ∩ U(p))−

by the calculation of the previous part. In particular

X ∩ U(p) 6= ∅

so that
∅ 6= X ∩ U(p) = X ∩ (E ∪ p−) = X ∩ p− ⊆ p−

to give x ∈ L(X) by Lemma 2.16 applied to the particular case (·)� = (·)−. �

With this we can prove the crucial result, which is an improved version of Lemma 4.1
of [6].

5.7 LEMMA. For each space S and closed set X ∈ CS, the three conditions

(i) wE is spatially induced (ii) X = L− (iii) wE = [L′]

are equivalent, where E = X ′ and L = L(X).
Furthermore, if the base space S is T0 then these hold precisely when X has a discrete

dense subspace.

Proof. We first prove the three implications (i)⇒(ii)⇒(iii)⇒(i) in turn.

(i)⇒(ii). Assuming (i) we have
wE = [F ]

for some F ∈ OfS. This gives

E = wE(∅) = [F ](∅) = F ◦

and Lemma 5.6 gives
L′ = σS(wE) = σS([F ]) = F
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so that
X = F ◦′ = L′◦′ = L−

as required.

(ii)⇒(iii). On general grounds we have

wE ≤ ([ · ] ◦ σS)(wE) = [L′]

using Lemma 5.6. We have

[L′](E) = (L′ ∪E)◦ = (L ∩X)−′ = L−′

since L ⊆ X, so that (ii) gives
[L′](E) = X ′ = E

and hence
[L′] ≤ wE

by a use of Lemma 3.10 of [9].

(iii)⇒(i). This is trivial.

Now suppose that S is T0.
By Lemma 2.12 we know that L is a discrete subspace of X. Thus if X = L− then L

is the discrete dense subspace we are after.
Conversely, suppose M is a discrete dense subspace of X. Since M− = X, it suffices

to show that M ⊆ L. Consider any p ∈ M . Since M is discrete we have

M ∩ U = {p}

for some open set U . We show that X ∩ U ⊆ p−. Thus, consider any q ∈ X ∩ U , and
consider any open set V with q ∈ V . Since q ∈ M− ∩ U ∩ V we have some point

r ∈ M ∩ U ∩ V ⊆ {p}

and hence p ∈ V (since r = p). This show that q ∈ p−, as required. �

With these preliminaries we can prove the main result, which first appeared as Theo-
rem 4.4 of [6].

5.8 THEOREM. For each space S the three conditions

(i) The canonical morphism σS is monic (and hence is an isomorphism).

(ii) Each nucleus on OS is spatially induced.

(iii) Each closed set of S is the closure of its set of loose points, that is S is weakly
scattered.

are equivalent.
Furthermore, when S is T0 these occur precisely when each closed set has a discrete

dense subset.
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Proof. We first prove the three implications (i)⇒(ii)⇒(iii)⇒(i) in turn.

(i)⇒(ii). Assuming (i) consider any nucleus j ∈ NOS and let E = σS(j). Then
E ∈ OfS and Lemma 3.6 gives

σS([E]) = E = σS(j)

and hence j = [E], by (i).

(ii)⇒(iii). This is an immediate consequence of Lemma 5.7.

(iii)⇒(i). Assuming (iii) consider a distinct pair j, k of nuclei. By symmetry we may
suppose j � k. By a standard representation thus gives some A ∈ OS with

j ≤ wA k � wA

and hence, by (iii) and Lemma 5.7, we have

j ≤ [E] k � [E]

for some E ∈ OfS. The adjunction properties (of Theorem 3.7) now give

σ(j) ⊆ E σ(k) * E

and hence σ(j) 6= σ(k), as required.

The remainder of the required result is a direct consequence of Lemma 5.7. �

Some ten years after the appearance of [6] and [7] the characterization

S is sober and NOS is spatial ⇐⇒ each closed set has a discrete dense subset

for T0 spaces S was produced by Isbell (as Theorem 7 of [2]). The refinements of that
results have been incorporated into Theorem 5.8.

What is needed now is a collection of examples of various spaces and their assemblies.
These can be found in [13].

6 Essential points

As said in the Preamble, many of the results in this set of notes are taken from [3] or [6].
There is some overlap between those two papers, but that is no bad thing for they look at
the topic from different points of view. However, there is one aspect of [3] that is missing
from [6]. That is the relationship with spectra of commutative rings.

A decent account of this topic would take us too far away from the main theme of this
set of notes. There has been quite a lot of work done in this area since [3], and at the
time of writing I am not familiar with all the relevant material. But, just as an appetizer,
let’s look at the results in [3].

Before we get to the pertinent aspect we need a bit of notation.

6.1 DEFINITION. Let A be a frame with point space S = pt(A) viewed as the set of
∧-irreducible elements.
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For each a ∈ A we let
P(a) = {p ∈ S | a ≤ p}

be the set of points above a, and we let

M(a) = minP(a)

be the set of minimal members of P(a). �
The construction of M(a) needs a bit more explanation.
We have P(a) ⊆ A, and so P(a) can be viewed as a poset with the comparison

inherited from A. We extract the minimal members of that poset. Thus p ∈ M(a) if
p ∈ P(a) and

q ≤ p =⇒ q = p

for all q ∈ P(a).
Note that p ∈ M(a) need not be minimal in A, only in the smaller poset P(a). Note

also that we may view P(a) as a subset of S. It then carries a second comparison, the
restriction of the specialization order on S. This is just the reverse of the comparison
inherited from A.

We know that the kernel s of the canonical morphism

A
UA - OS

is given by
s(a) =

∧P(a)

for each a ∈ A. This infimum is computed in A. Is it necessary to use the whole of P(a)
to obtain s(a)? Clearly not, for if we have p, q ∈ P(a) with q ≤ p, then we can forget
about p. In fact, as we are going to show, we can forget about every point not in M(a).
For this we need a preliminary observation.

6.2 LEMMA. For a frame A let X be a downwards directed subset of the point space
S = pt(A). Then

∧X ∈ S.

Proof. Recall that X is downwards directed if it is non-empty and if for each p, q ∈ X
there is some r ∈ X with r ≤ p, q.

In particular
∧X 6= > (since X is non-empty). By way of contradiction suppose

x ∧ y ≤ ∧X x �
∧X y �

∧X
for some x, y ∈ A. The second and third of these give

x � p y � q

for some p, q ∈ X . But now there is some r ∈ X with r ≤ p, q, so that

x ∧ y ≤ r

and hence either
x ≤ r ≤ p or y ≤ r ≤ q

which is the contradiction. �

Recall that ZL (Zorn’s Lemma) says that if P is a poset for which each upwards
directed subset has an upper bound, then each member of P lies below a maximal member.
By turning P(a) upside-down we obtain the following.
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6.3 COROLLARY. For each frame A, element a ∈ A, and point p ∈ P(a), there is some
q ∈ M(a) with q ≤ p.

This has an immediate consequence about the nature of the kernel s.

6.4 COROLLARY. For each frame A we have

s(a) =
∧M(a)

for each a ∈ A.

This shows that when computing s(a) the points in P(a)−M(a) are not needed. But
are all the points in M(a) needed? We are going to analyse this question.

6.5 DEFINITION. For a frame a, element a ∈ A, and point p ∈ P(a), we say p is essential
over a if

s(a) 6= ∧
(P(a) = {p})

holds. We let E(a) be the set of points that are essential over a. �

By Corollary 6.3 we have
E(a) ⊆M(a) ⊆ P(a)

for each a ∈ A. Is it the case that E(a) = M(a)? We will show that E(a) = ∅ 6= M(a)
can happen.

You should compare the notion of Definition 6.5 with that of an essential prime of [3].
Here every element a ∈ A has an associated set E(a), whereas there an element a ∈ A
has an associated set Ess(a) only if s(a) = a. Of course, we always have

E(a) = E(s(a)) = Ess(s(a))

and E(a) = Ess(a) when s(a) = a. In this account I have made explicit this hidden
spatiality condition.

Keeping this in mind we see that the following is a slight generalization of Proposition
2.3 of [3].

6.6 LEMMA. For each frame A, element a ∈ A, and point p ∈ P(a) the four conditions

(i) The point p is essential over a, that is p ∈ E(a).

(ii) We have
z ∧ p ≤ s(a) z � s(a)

for some z ∈ A.

(iii) We have
j(s(a)) = s(a) =⇒ j(p) = p

for all j ∈ NA.

(iv) The point p is a maximal element of the boolean quotient Aws(a)
.

are equivalent.
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Proof. We first show the equivalence

(i) ⇐⇒ (ii)

and then deal with (iii) and (iv).

(i)⇒(ii). Assuming (i) let
z =

∧{P(a)− {p}}
so that

z ∧ p =
∧P(a) = s(a)

and z � s(a) since p ∈ E(a).

(ii)⇒(i). Assuming (i) let
y =

∧{M(a)− {p}}
so that s(a) ≤ y and we require y 6= s(a). By way of contradiction suppose y = s(a). For
each

q ∈ M(a)− {p}
using the separating element from (ii) we have

z ∧ p ≤ s(a) = y ≤ q

so that one of
z ≤ q p ≤ q

holds. The second of these with the minimality of q gives q = p, and this has been
excluded. Thus we have z ≤ q for all q ∈M(a)− {p}. This gives

z ≤ ∧{M(a)− {p}} = y = s(a)

which is the contradiction.

(ii)⇒(iii). Assuming (ii) consider any j ∈ NA with j(s(a)) = s(a). Then, using the
separating condition, we have

j(z) ∧ j(p) = j(z ∧ p) ≤ j(s(a)) = s(a) ≤ p

so that one of
z ≤ j(z) ≤ p j(p ≤ p

holds. The first gives
z = z ∧ p ≤ s(a)

which is not so. Thus j(p) = p, as required.

(iii)⇒(iv). Assuming (iii), consider j = ws(a). Then

j(s(a) = s(a)

so that j(p) = p, which leads to the required result.

(iv)⇒(ii). Assuming (iv) let
z = (p ⊃ s(a))
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so that
z ∧ p ≤ s(a)

which is one half of the required separation. For the other half observe that if z ≤ s(a)
then (iv) gives

p = ws(a) = (z ⊃ s(a)) = >
which is not so. �

The important part of this result is the equivalence

(i) ⇐⇒ (ii)

which gives a characterization of essentiality in terms of a separation property. However,
as we will see, the equivalent (iv) is not without interest.

We now move towards a version of Theorem 3.4 of [3]. As indicated above, throughout
that result there is a hidden assumption of spatiality. Here we make that explicit. To do
that we make a preliminary observation.

The non-standard numbering of the clauses in the following result will help in the
proof of Theorem 6.8 later.

6.7 LEMMA. For each frame A the three conditions

(ii) (∀a ∈ A)[Aws(a)
is atomless =⇒ s(a) = >]

(iii) (∀a ∈ A)[E(a) = ∅ =⇒ s(a) = >]

(iv) (∀a ∈ A)[s(a) =
∧E(a)]

are equivalent.

Proof. (ii)⇔(iii). The atoms of a boolean algebra are in bijective correspondence with
its maximal elements, hence the equivalence (i) ⇔ (iv) of Lemma 6.6 gives

E(a) = ∅ ⇐⇒ Aws(a)
is atomless

for each a ∈ A. From this we see that conditions (ii) and (iii) are little more than
rephrasings of each other.

(iii)⇒(iv). Assuming (iii), consider an a ∈ A, let

b =
∧E(a) c = (b ⊃ s(a))

so that s(a) ≤ b and we require c = >.
Observe that

c ∧ b ≤ s(a)

so that
s(c) ∧ b ≤ s(c ∧ b) ≤ s2(a) = s(a)

and hence
s(c) ≤ (b ⊃ s(a)) = c
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that is
s(c) = c

and we require s(c) = >.
By way of contradiction suppose s(c) 6= >. Then (ii) gives E(c) 6= ∅, and so provides

some p ∈ E(c), and hence a separation

z ∧ p ≤ s(c) = c z � s(c) = c

by Lemma 6.6. This gives

z ∧ b ∧ p ≤ s(a) z ∧ b � s(a)

to witness that p ∈ E(a), again by Lemma 6.6. But now b ≤ p, so that

z ∧ b = z ∧ b ∧ p ≤ s(a)

which is the contradiction.

(iv)⇒(iii). Assuming (iv), for each a ∈ A we have

E(a) = ∅ =⇒ s(a) =
∧E(a) =

∧∅ = >
for the required result. �

The equivalent conditions of this result do not ensure spatiality. To see that consider
any non-trivial frame A with an empty point space. Then E(a) = ∅ for each element a,
and

s(a) =
∧∅ = >

to show that (ii,ii,v) hold.
We can now obtain a version of Theorem 3.4 of [3]. In this I have made explicit the

spatiality requirements.

6.8 THEOREM. For each frame A the four conditions

(i) The frame A is totally spatial.

(ii) The frame A is spatial and

Awa is atomless =⇒ a = >
for each a ∈ A.

(iii) The frame A is spatial and

E(a) = ∅ =⇒ a = >
for each a ∈ A.

(iv) We have
a =

∧E(a)

for each a ∈ A.
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(v) The assembly NA is spatial.

are equivalent.

Proof. (i)⇒(ii). Assuming (i), the frame is spatial, by considering the quotient A =
Aid , so it suffices to verify the implication. In fact, we verify the contrapositive.

Thus consider any a ∈ A with a 6= >. Then wa 6= >N , and hence the quotient Awa is
non-trivial. By (i) this gives a point of Awa , and hence also an atom.

(ii)⇔(iii). Going in either direction we have s = id since the frame is spatial. Thus,
be the equivalence (i)⇔(iv) of Lemma 6.6 we have

E(a) = ∅ ⇐⇒ Awa is atomless

for each a ∈ A. From this we see that conditions (ii) and (iii) are little more than
rephrasings of each other.

(iii)⇒(iv). Assuming (iii) we have s = id since the frame is spatial. The rest of (ii)
gives

(∀a ∈ A)[E(a) = ∅ =⇒ s(a) = a = >]

and hence
(∀a ∈ A)[a = s(a) =

∧E(a)]

by Lemma 6.7.

(iv)⇒(v). Assuming (iv), for each a ∈ A we have

s(a) =
∧M(a) ≤ ∧M(a) = a

to show that A is spatial.
To show that NA is spatial consider any j ∈ NA and let

k = S(j) =
∧{wp | p ∈ S, j(p) = p}

where S = pt(A). We have j ≤ k, and we require j = k.
By way of contradiction suppose k � j, This gives some a ∈ A with

k(A) � j(a)

and, by replacing a be j(a), we may suppose j(a) = a. By (iv) we have

k(a) �
∧E(a)

to give
k(a) � p

for some p ∈ E(a). By the separation property of Lemma 6.6 we have

z ∧ p ≤ s(a) = a x � s(a) = a

for some z ∈ A. The first of these gives

j(z) ∧ j(p) ≤ j(a) = a ≤ p

35



so that one of
z ≤ j(z) ≤ p j(p) = p

holds. This left hand alternative can not hold, for otherwise

z = z ∧ p ≤ a

which is not so.
We thus have some p ∈ S with a ≤ p = j(p), and hence

k(a) ≤ k(p) ≤ wp(p) = p

which is the contradiction.

(v)⇒(i). This follows as in Theorem 5.5. �

The implication of part (iii) of this result is reminiscent of the characterization

(∀x ∈ CS)[L(X) = ∅ =⇒ X = ∅]
of weakly scattered spaces. This is not a coincident, as Lemma 3.6 of [3] shows.

6.9 LEMMA. For each space S we have

p ∈ L(X) ⇐⇒ p−′ ∈ E(X ′)

for each X ∈ CS and p ∈ S.

Proof We are concerned with the space S and its associated frame OS. Each point
p ∈ S gives a point p−′ of OS. Consider any X ∈ CS. We look at the corresponding
member X ′ of OS.

Note that since OS is spatial, we have s(X ′) = X ′.
By separation characterization of Lemma 6.6 we have

p−′ ∈ E(X ′)

precisely
X ′ ⊆ p−′ and (∃W ∈ OS)[W ∩ p−′ ⊆ X ′ and W * X ′]

that is
p− ⊆ X and (∃W ∈ OS)[X ∩W ∩ p−′ = ∅ and X ∩W 6= ∅]

which is
p ∈ X and (∃W ∈ OS)[∅ 6= X ∩W ⊆ p−]

and this is equivalent to
p ∈ L(X)

by the appropriate case of Lemma 2.16. �

The final section of [3] gives us a glimpse of the connection between frames and rings.
It is just a glimpse, for there is far more than could be said there or here. For instance,
the analysis of ranking techniques and decomposition theories for torsion theories. But
that’s for another day.
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7 Regular algebras

The results of this final section are derived from various observations in [6]. I’m not sure
where these fit in the general scheme of things, but here seems to be as good a place as
any.

We begin with a general observation and then look at a particular case. 3

Consider an arbitrary frame morphism

A
f - B

together with nuclei j ∈ NAS and k ∈ NB on the source and target. This gives us a
3-sided diagram

A
f - B

Aj

j∗

?
Bk

k∗

?

which cries out for a fill-in to produce a commuting square. Since j∗ is surjective there
can be at most one such fill-in. By Theorems 3.14 and 3.20 of [8], such a fill-in exists
precisely when

j ≤ ker(k∗ ◦ f)

and when it does exist it is just the restriction of f to Aj . As in Section 5 of [9] (just
before Theorem 5.13), this fill-in exists precisely when

f ◦ j ≤ k ◦ f

holds.
Now consider the case where both j and k are double negation. Thus we have a

commuting square

A
f - B

A¬¬
?

B¬¬
?

a - ¬¬f(a)

precisely when
f(¬¬a) ≤ ¬¬f(a)

for all a ∈ A. When it does exist it is given by the indicated assignment.
We look at a particular case of this set up.
Consider an arbitrary space S and the frame morphism

NOS
σS -

�
[ · ]

OfS

3This general observation should have been made explicit in Section 5 of [9].
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given by Theorem 3.7. Here
σS a [ · ]

that is [ · ] is the right adjoint of σS. Recall also that

σS ◦ [ · ] = idOfS

to show that σS is surjective.
We have a 3-sided diagram

NOS
σS - OfS

u
(NOS)¬¬

?
(OfS)¬¬

?

where (NOS)¬¬ is a certain complete boolean algebra and (OfS)¬¬ is the particular
complete boolean algebra of front-regular open subsets of S. We will show that for this
case there is a fill-in, and it is an isomorphism.

We fix S throughout the discussion, so we may write σ for σS when this is convenient.
We need to relate negation on NOS with negation on OfS. In fact, we can relate

certain implications.

7.1 LEMMA. For each space S, nucleus j ∈ NOS, and f -open set F ∈ OfS, we have

(j ⊃ [F ]) = [σS(j) ⊃ F ]

where the implication on the left is computed in NOS and that on the right is computed
in OfS.

Proof. We make use of the adjunction σ a [ · ]. For k ∈ NOS we have

k ≤ (j ⊃ [F ]) ⇐⇒ k ∧ j ≤ [F ]

⇐⇒ σ(k ∧ j) ⊆ F

⇐⇒ σ(k) ∧ σ(j) ⊆ F

⇐⇒ σ(k) ⊆ (σ(j) ⊃ F ) ⇐⇒ k ≤ [(σ(j) ⊃ F )]

to give the required result. �

Recall that in OfS negation and double negation are given by

¬E = E=′ ¬¬E = E=�

for E ∈ OfS. Thus by taking F = ∅ in Lemma 7.1 we obtain the following.

7.2 COROLLARY. For each space S and j ∈ NOS we have

¬j = [E=′] ¬¬j = [E=�]

where E = σS(j).
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Proof. The left hand equality is a particular case of Lemma 7.1. This gives

σ(¬j) = σ[E=′] = E=′

so that another use of the left hand equality gives

¬¬j = ¬[E=′] = [E=′=′] = [E=�]

as required. �

We also have a characterization of (NOS)¬¬.

7.3 COROLLARY. For each space S and j ∈ OS, we have j ∈ (NOS)¬¬ precisely when

j = [E]

for some E ∈ (OfS)¬¬, and then σS(j) = E.

Proof. Suppose j ∈ (NOS)¬¬ and let E = σ(j). Then

j = ¬¬j = [E=�]

and
E = σ(j) = σ([E=�]) = E=�

to show that j = [E] with E ∈ (OfS)¬¬.
Conversely, suppose that j = [E] with E ∈ (OfS)¬¬. Then σ(j) = E and so

¬¬j = [E=�] = [E] = j

to show j ∈ (NOS)¬¬. �

We now return to the 3-sided diagram (u).
From our preliminary observations we know there is a fill-in precisely when

σ(¬¬j) ⊆ ¬¬(σ(j))

for each j ∈ NOS. With E = σ(j) this condition is

σ([E=�]) ⊆ E=�

which, since σ ◦ [ · ] = id , always holds.
Thus we do get a fill-in. And just for being good, we get an extra treat.

7.4 THEOREM. For each space S there is a commuting square of frame morphism

NOS
σS - OfS

(NOS)¬¬
?

ρS

- (OfS)¬¬
?

where ρS is the restriction of σS to (NOS)¬¬. Furthermore, ρS is an isomorphism.
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Proof. From the calculations above we know that

ρS = σS|(NOS)¬¬

is a frame morphism which makes the square commute. Thus it suffices to show that this
ρ is injective and surjective.

To show that ρ is injective suppose

ρ(j) = ρ(k)

for j, k ∈ (NOS)¬¬. Then
σ(j) = ρ(j) = ρ(k) = σ(k)

so that Corollary 7.3 gives
j = [σ(j)] = [σ(k)] = k

as required.
To show that ρ is surjective consider any E ∈ (OfS)¬¬ and let j = [E]. Then, again

by Corollary 7.3, we have j ∈ (NOS)¬¬ and

ρ(j) = σ(j) = σ([E]) = E

for the required result. �

As an application of these ideas let’s have a look at the result which initially prompted
this analysis. The proof we give of the following is not the best one, for it hides a lot of
the relevant facts. A much better proof, which exposes these facts, is given in [12].

7.5 THEOREM. For a T0 space S, the assembly NOS is boolean precisely when S is
scattered.

Proof. Suppose first that NOS is boolean. Then each nucleus j ∈ NOS is regular and
hence is spatially induced by Corollary 7.3. Thus, by Theorem 5.8, we know that NOS
and OfS are isomorphic and S is weakly scattered. But now OfS is a boolean algebra
and hence, since S is T0, it is just the power set of S. This shows that S is TD and weakly
scattered, and hence is scattered by Lemma 2.19.

Conversely, suppose S is scattered. Then it is weakly scattered and TD by Lemma
2.19. By by Theorem 5.8, we know that NOS and OfS are isomorphic. Since S is TD

the front space fS is discrete, and hence OfS is a boolean algebra. �

As I said at the beginning of this section, I am not quite sure of the relevance of these
ideas, but no doubt they will be useful somewhere.
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