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In [3] we constructed a contravariant functor

Top - Frm

from spaces to frames. The object assignment sends a space S to its topology OS, and
the arrow assignment sends a map φ to the inverse image function φ← (restricted to the
topologies). In this document we show that this functor is one half of a contravariant
adjunction between the two categories. The object assignment in the other direction

A - pt(A)

sends a frame A to its point space pt(A). This is an important construction which enables
quite a lot of point-sensitive topology, that is point set topology, to be done in a point-free
way, that is using frames.

In Section 1 we first set up the point space and the associated adjunction in what
may seem to be a rather ad hoc fashion. After that, in Section 2, we show that the
adjunction is schizophrenically induced (by a rather trivial object). This explains much
of the behaviour of the adjunction, and brings out many of its other features. You may
prefer to read that section first before reading the ad hoc version. In Section 3 we give an
entirely point-sensitive account of the construction. This, in fact, was the original version
of the construction, and again you might want to read it before either of the first two
sections.

We then look at two particular examples of the point-space construction. In Section
4 we look at the ideal completion of a poset, and in Section 5 we look at the Stone
representation of distributive lattices. These two section can be read in either order.

The point space construction depends on attaching a set pt(A) of points to a frame A.
In can happen that pt(A) is empty even though A is quite large and complicated. Section
6 gives an example of such an exotic frame. On the other hand, many frames have enough
points to be a topology in disguise. Section 7 considers this aspect. This involves the use
of variants of Zorn’s Lemma. Again these last two section can be read in either order.

Contents

1 The point space construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 The schizophrenic adjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Reflections on sobriety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 The ideal completion of a poset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 The spectrum of a lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6 Frames with no points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7 Frames with enough points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1



1 The point space construction

We wish to convert a frame A into a space. To do that we need to produce a set of points,
and then furnish this with a topology. It turns out that the points we need are sitting
inside A.

1.1 DEFINITION. Let A be a frame. An element p ∈ A is ∧-irreducible if p 6= > and

x ∧ y ≤ p =⇒ x ≤ p or y ≤ p

for all x, y ∈ A.
Let pt(A) be the set of ∧-irreducible elements of A. �

Notice that a ∧-irreducible element has a certain prime-like property. In fact, an
element p is ∧-irreducible exactly when the principal ideal ↓p is prime. (We take a closer
look at this and related matters in Section 2.)

We use pt(A) to carry a topology, and so we often refer to a ∧-irreducible element of
A as a point of A. But before we set up this topology let’s get some idea of what pt(A)
can look like.

1.2 LEMMA. Let A be a frame.
Each maximal element of A is ∧-irreducible.
If A is boolean, then each ∧-irreducible is maximal.
If A is linear, then each non-> element is ∧-irreducible.

Proof. Suppose p is maximal in A. Thus p < > and there is nothing strictly between
these two. Consider x, y ∈ A with x∧y ≤ p. If x � p then p < p∨x, and hence p∨x = >.
Similarly, if y � p then p ∨ y = >. Thus, if x � p and y � p, then

p = p ∨ (x ∧ y) = (p ∨ x) ∧ (p ∨ y) = >

which is not so.
Suppose A is boolean and p is ∧-irreducible in A. To show that p is maximal, consider

any element x with p < x. With y = ¬x we have x ∧ y = ⊥ ≤ p, so that y ≤ p (since
x � p). But now y ≤ p ≤ x so that > = x ∨ y ≤ x to give the required result.

Suppose A is linear. Thus
x ≤ y or y ≤ x

for each x, y ∈ A. In particular we have

x ∧ y = x or x ∧ y = y

depending on how x and y compare. Now consider any element p < >. For each x, y ∈ A
we have

x ∧ y ≤ p =⇒ x = x ∧ y ≤ p or y = x ∧ y ≤ p

to show that p is ∧-irreducible. �

The second part of this result shows that there are some quite large frames that have
no points at all. The points of a complete boolean algebra are its maximal elements and
these are in bijective correspondence with its minimal elements, usually called its atoms.
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Thus a complete atomless boolean algebra is an example of a frame with no points. There
are also some quite exotic, non-boolean, frames that have no points. We look at one of
these in Section 6.

Definition 1.2 attaches to each frame A a set pt(A) of points. For each space S the
topology OS is a frame. So what is the set of points pt(OS)? The obvious answer is not
quite correct.

Let S be an arbitrary space. Observe that for each s ∈ S and U ∈ OS we have

U ⊆ s−
′ ⇐⇒ s− ⊆ U ′ ⇐⇒ s ∈ U ′ ⇐⇒ s /∈ U

and, of course, s−
′
is also a member of OS.

1.3 LEMMA. For each space S, each point s ∈ S gives a point s−
′
of OS.

Proof. We have s−
′ 6= S (the top of OS), for otherwise s− = ∅, which is not so.

For each U, V ∈ OS the observation above gives

U ∩ V ⊆ s−
′
=⇒ s /∈ U ∩ V =⇒ s /∈ U or s /∈ V =⇒ U ⊆ s−

′
or V ⊆ s−

′

to show that s−
′
is ∩-irreducible in OS. �

This result sets up an assignment

S - pt(OS)
s - s−

′

which, in due course, we see is a continuous map. However, it need not be injective, nor
surjective. We look at the ramifications of this in Section 3.

The important thing is that when dealing with a space S we should remember to
distinguish between a point of S and a point of OS.

We now return to the general construction of furnishing pt(A) with a topology.

1.4 DEFINITION. Let A be a frame. For each element a ∈ A we use

p ∈ UA(a) ⇐⇒ a � p

(for p ∈ pt(A)) to extract a subset of pt(A). �

The subscript on UA indicates the parent frame, but we often omit this when there is
little chance of confusion. Here is an example where we do omit the subscript.

1.5 LEMMA. For each frame A we have

U(>) = pt(A) U(⊥) = ∅
U(a ∧ b) = U(a) ∩ U(b) U(

∨
X) =

⋃
U→(X)

for each a, b ∈ A and X ⊆ A.
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Proof. Of these only the bottom left equality is not immediate. This depends on the
∧-irreducibility of the points in pt(A). Thus, for p ∈ pt(A) we have

p /∈ U(a ∧ b) ⇐⇒ a ∧ b ≤ p⇐⇒ a ≤ p or b ≤ p⇐⇒ p /∈ U(a) or p /∈ U(b)

which, after taking the contrapositive, gives the equality. �

This result shows that the range U→A (A) of the assignment UA is a topology on pt(A),
and so justifies the following definition.

1.6 DEFINITION. For each frame A the set pt(A) furnished with the topology

Opt(A) = {UA(a) | a ∈ A}

is the point space of A. �

Lemma 1.5 also gives the following.

1.7 COROLLARY. For each frame A the assignment

A
UA - Opt(A)

is a surjective frame morphism.

The following terminology will be justified in Section 3.

1.8 DEFINITION. For each frame A the surjective frame morphism UA is the spatial
reflection of A. �

Each surjective frame morphism from a frame is determined by its kernel, the corre-
sponding nucleus on that frame. For the spatial reflection this is easy to describe.

1.9 LEMMA. For each frame A the kernel sA of the spatial reflection UA is given

sA(a) =
∧
{p ∈ pt(A) | a ≤ p}

(for each a ∈ A), where this infimum is computed in A.

Proof. For each a ∈ A let

P (a) = {p ∈ pt(A) | a ≤ p}

so that s(a) =
∧
P (a) is required. For each x ∈ A we have

x ≤ s(a) ⇐⇒ U(x) ⊆ U(a)

⇐⇒ (∀p ∈ pt(A))[x � p =⇒ a � p]

⇐⇒ (∀p ∈ pt(A))[a ≤ p =⇒ x ≤ p] ⇐⇒ x ≤
∧
P (a)

to give the required result. �

Not every space can arise as the point space of some frame. In Section 3 we characterize
the spaces which do arise in this way. (They are the sober spaces.) For now we determine
just some of their properties.
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1.10 LEMMA. For each frame A the specialization order on pt(A) is the reverse of the
comparison inherited from A. In particular, pt(A) is T0.

Proof. For p, q ∈ pt(A) we have

q v p⇐⇒ q− ⊆ p−

⇐⇒ (∀x ∈ A)[q ∈ U(x) =⇒ p ∈ U(x)]

⇐⇒ (∀x ∈ A)[x ≤ p =⇒ x ≤ q] ⇐⇒ p ≤ q

to give the required result. �

The assignment
A - pt(A)

is the object part of a contravariant functor, but what is the arrow part? How can we
convert a frame morphism

B
h - A

into a continuous map

pt(A) - pt(B)

between the point spaces? Of course, this conversion must interact with function compo-
sition in an appropriate manner.

Once again we remember that each frame morphism has a right adjoint

B
h∗ -

�
h∗

A

passing in the other direction.

1.11 LEMMA. For each frame morphism, as above, we have h∗(p) ∈ pt(B) for each
p ∈ pt(A).

Proof. Consider p ∈ pt(A). For each z ∈ B we have

z ≤ h∗(p) ⇐⇒ h∗(z) ≤ p

and hence h∗(p) 6= >. For each x, y ∈ B we have

x ∧ y ≤ h∗(p) =⇒ h∗(x) ∧ h∗(y) = h∗(x ∧ y) ≤ p

=⇒ h∗(x) ≤ p or h∗(y) ≤ p =⇒ x ≤ h∗(p) or y ≤ h∗(p)

to show that h∗(p) is ∧-irreducible. �

This gives us both an object assignment and an arrow assignment from Frm to Top .
For the time being let us be a bit pedantic, For each frame morphism h, as above, let

h? = h∗|pt(A)

so that we have a function
h? : pt(A) - pt(B)

be Lemma 1.11. (There may be time when we get a bit sloppy and write h∗ for h?.)
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1.12 THEOREM. The pair of assignments

A - pt(A) h - h?

form a contravariant functor

Frm - Top

from frames to spaces.

Proof. There is very little left to check, but we should show that for each frame
morphism

B
h - A

the induced function
h? : pt(A) - pt(B)

is continuous. To do that we show

h←? (UB(b)) = UA(h(b))

for each b ∈ B.
For each point p ∈ pt(A) we have

p ∈ h←? (UB(b)) ⇐⇒ h?(p) ∈ UB(b)

⇐⇒ b � h∗(p)

⇐⇒ h∗(b) � p ⇐⇒ p ∈ U(A(h(b))

to give the required result. The adjunction h = h∗ a h∗ is used at the third equivalence.

Let’s also look at the passage across composition of arrows.
Consider a composite

C
k - B

h - A

of frame morphisms. Each component has a right adjoint

C �
k∗

B �
h∗

A

and we find that
(h ◦ k)∗ = k∗ ◦ h∗

which leads to the required property. �

The calculation in this proof shows that each frame morphism

B
h - A

induces a commuting square

B
h - A

Opt(B)

UB ?

h←?
- Opt(A)

UA?

of frame morphisms. Thus we have the following.
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1.13 SCHOLIUM. The composite O ◦ pt is an endofunctor on Frm , and the indexing
morphism U• is natural.

On the whole there it little point in setting up a functor unless some use can be made
of it. Here we have set up a pair a functors. Why?

1.14 THEOREM. For each frame A and space S there is a bijective correspondence

Frm [A,OS] Top [S, pt(A)]

f � - φ

between frame morphisms and space maps given by

s ∈ f(a) ⇐⇒ a � φ(s)

(for a ∈ A and s ∈ S). Furthermore, this correspondence is natural for variations of A
and S.

Proof. Suppose that f is a frame morphism (with indicated source and target). We
need to do some checks on the suggested φ.

The first thing we need to check is that such a function φ does exists. To do this fix
s ∈ S, let X ⊆ A be given by

x ∈ X ⇐⇒ s /∈ f(x)

(for x ∈ A), and let φ(s) =
∨
X. Since f is a frame morphism we have

f(φ(s)) =
⋃
{f(x) | x ∈ X}

and hence s /∈ f(φ(s)). Thus, for a ∈ A we have

a ≤ φ(s) =⇒ f(a) ⊆ f(φ(s)) =⇒ s /∈ f(a)

and the converse
s /∈ f(a) =⇒ a ∈ X =⇒ a ≤ φ(s)

is little more than the definition of φ(s).
This gives a function

φ : S - A

so it remains to check that each value of φ is a point of A and that φ is continuous.
Consider s ∈ S. We have φ(s) 6= >, otherwise s /∈ f(>).
For s ∈ S the element φ(s) of A is ∧-irreducible. For otherwise we have some a, b ∈ A

with
a � p(s) b � φ(s) a ∧ b ≤ φ(s)

and then
s ∈ f(a) s ∈ f(b) s /∈ f(a ∧ b)

which is a contradiction since f(a ∧ b) = f(a) ∩ f(b).
The map φ is continuous. Each open set of pt(A) has the form U(a) for some a ∈ A,

and
φ←(U(a)) = f(a)
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by a simple calculation. This deals with the assignment f - φ.

Suppose that φ is a space map (with indicated source and target). We need to do
some checks on the suggested f .

For each a ∈ A a simple calculation gives

f(a) = φ←(U(a))

to show that f(a) ∈ OS. Furthermore, since both

A
UA - OS φ←- Opt(A)

are frame morphisms, the composite

f = φ← ◦ UA

is a frame morphism. This deals with the assignment φ - f .

Consider the two 2-steps trips

f - φ - g φ - f - ψ

across the assignments. For each a ∈ A and s ∈ S we have

s ∈ g(a) ⇐⇒ a � φ(a) ⇐⇒ s ∈ f(a) a ≤ ψ(s) ⇐⇒ s /∈ φ(a) ⇐⇒ a ≤ φ(s)

to show
g(a) = f(a) ψ(s) = φ(s)

and so verify the bijective correspondence.

It remains to deal with the naturality. To this end consider a pair or arrows

B
h - A T

θ - S

one from Frm and one from Top . These induce a square of assignments

f � - φ

Frm [A,OS] Top [S, pt(A)]

Frm [B,OT ]

θ→ ◦ − ◦ h
?

Top [T, pt(B)]

h∗ ◦ − ◦ θ
?

g � - ψ

where the vertical assignments are as indicated. We must show that the two paths from
top left to bottom right agree, and the two paths from top right to bottom left agree.
(Actually, it is sufficient to deal with just one of these pairs.) But for b ∈ B and t ∈ T
we have

t ∈ (θ← ◦ f ◦ h)(b) ⇐⇒ θ(t) ∈ f(h(b)) b ≤ (h∗ ◦ φ ◦ θ)(t) ⇐⇒ h(b) ≤ φ(θ(t))

so that given correspondence
f � - φ
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ensures the required results. �

This result shows that the two functors O(·) and pt(·) form a contravariant adjunction
between the categories Frm and Top . Such adjunctions have several different charac-
terizations and properties. We look at some of these for this particular adjunction in the
next sections.

To conclude this section we remember that each contravariant has an associated pair
of units, each obtained by transposing an identity arrow to the other side. What do you
think the units of this particular adjunctions are? Your guess won’t be far wrong.

For a frame A or space S the unit is obtained as follows.

Frm [A,Opt(A)] Top [pt(A), pt(A)] Frm [OS,OS] Top [S, pt(OS)]

? � idpt(A) idOS
- ?

We easily determine what these are.

1.15 THEOREM. (f) For each frame A the unit

A - Opt(A)

is the spatial reflection UA. In particular, this unit UA is a frame morphism.
(s) For each space S the unit

S - pt(OS)
s - s−

′

send a point of S to the corresponding point of OS. In particular, this unit is a continuous
map.

Proof. (f) Let φ be the identity map on pt(A), and let f be the transpose of φ as given
by Theorem 1.14. For each a ∈ A and s ∈ pt(A) we have

s ∈ f(a) ⇐⇒ a � φ(s) ⇐⇒ a � s⇐⇒ s ∈ UA(a)

to show that f = UA. Of course, we checked that UA is a frame morphism before we set
up the topology on pt(A).

(s) Let f be the identity morphism of OS, and let φ be the transpose of f as given by
Theorem 1.14. Remembering the equivalence just before Lemma 1.3, for each s ∈ S and
U ∈ OS we have

U ⊆ φ(s) ⇐⇒ s /∈ f(U) ⇐⇒ s /∈ U ⇐⇒ U ⊆ s−
′

to show that φ(s) = s−
′
. The continuity of φ can be checked directly. �

This sets up the contravariant adjunction in a rather computational fashion. As I said
in the Preamble, the construction does look at bit ad hoc, and that is because we have
not yet been told the full story. That is the topic of the next section.
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2 The schizophrenic adjunction

As I said in the preamble to this document, the construction of Section 1 can seem rather
ad hoc, and prompts us to ask questions. Why that particular construction, and not some
other? What benefits can we gain from the construction? Is there some secret not being
told?

In this section we learn that the construction is an instance of a more general, and
quite canonical, construction. It is a schizophrenically induced contravariant adjunction.
These arise in several places in mathematics, especially when there is a duality around.
By now the technique used ought to be set in stone.

We also see that the adjunction could be set up in a different way, in fact several
different ways. In isolation each of these looks ad hoc, but when seen as a whole we begin
to appreciate that there is something more fundamental going on.

It turns out that the version of the construction describe in Section 1 is the one that
is most often useful in practice. Nevertheless, sometimes other versions are useful, and
these are uncovered in this section.

We want to connect the two categories

Frm Top

as in Theorem 1.14. To do this we find a single gadget which can pose as an object of
either category. The particular gadget we use is

2 = {0, 1}

the 2-element set.
This can pose as a frame with 0 < 1. In fact, this is the initial frame.
It can also pose as a space with

O2 = {∅, {1},2}

as the carried topology. This is usually called sierpinski space.
The trick is to remember that for each set Z there is a bijective correspondence

PZ [S −→ 2]

E � - χ

between subsets E of Z and the characters (characteristic functions) χ on Z. Here it is
convenient to write E∧ for the character corresponding to the subset E. Thus

z ∈ E ⇐⇒ E∧(z) = 1

z /∈ E ⇐⇒ E∧(z) = 0

for z ∈ Z. To fit in with later terminology we refer to such a characteristic function as a
Set -character.

We make a trivial, but significant, observation.

2.1 LEMMA. Let S be a space. A subset of S is open precisely when its character is
continuous (relative to the given topology on S and the sierpinski topology on 2).
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Proof. Consider any character
χ : S - 2

on S. This is continuous precisely when each of

χ←(∅) χ←({1}) χ←(2)

is open in S. The two outside ones are ∅ and S, and these are always open. Let

E = χ←({1})

so that χ = E∧. We have just see that

χ is continuous ⇐⇒ E is open

which is what we have to prove. �

This result shows that for each space S we have a bijective correspondence

OS Top [S,2]

U � - U∧

between the carried topology and the indicated arrow set of the category Top . We call
Top [S,2] the set of Top-characters, or the set of space characters of S, or even just the
characters of S when it is clear we are dealing with topological aspects.

We can take this a bit further.
Consider a continuous map

T
θ - S

between spaces. This induces a frame morphism θ← between the topologies. In turn this
induces a function θ◦ between the two sets of space characters.

U � - U∧

S OS Top [S,2]

T

θ
6

OT

θ←

?
Top [T,2]

θ◦

?

V � - V ∧

For each U ∈ OS we have
θ◦(U∧) = θ←(U)∧

so that
θ◦(U∧)(t) = 1 ⇐⇒ θ←(U)∧(t) = 1

⇐⇒ t ∈ θ←(U)

⇐⇒ θ(t) ∈ U ⇐⇒ U∧(θ(t)) = 1

for each t ∈ T . In other words
θ◦(U∧) = U∧ ◦ θ

for each U ∈ OS.
These calculations almost prove the following.
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2.2 LEMMA. The contravariant functor

Top
O - Frm

is naturally isomorphic to the ‘enriched’ hom-functor Top [−,2].

We won’t go into the precise meaning of this result (for it that doesn’t help us to
understand it). However, a bit more explanation won’t go amiss.

Notice that the calculations above show that the two sets

OS Top [S,2]

are naturally isomorphic for variation of the space S. What we haven’t done is furnish
Top [S,2] with a frame structure and show that this matches that of OS. This is not hard
to do, but there is no great benefit in doing it here. (The required structure is obtained
by a pointwise lifting from that on 2). The important message is that the behaviour of
the functor O(·) is that of a hom-functor with a few extra twiddly bits.

We are now going to obtain a similar description of the functor pt(·) in the opposite
direction.

Let A be a frame. A sf Frm -character or a frame character of A is a member of the
arrow set Frm [A,2], that is a frame morphism

A
χ - 2

from A to the 2-element frame 2. Thus

χ(>) = 1 χ(⊥) = 0

χ(x ∧ y) = χ(x) ∧ χ(y) χ(
∨
X) =

∨
χ→(X)

for each x, y ∈ A and X ⊆ A. You might like to ponder on the bottom right condition,
and show that these characters are in bijective correspondence with the ∧-irreducible
elements of A. (We look at the details of this proof shortly.)

We also use a different kind of gadget. Recall that a filter on the frame A is a non-
empty upper section F of A such that

x, y ∈ F =⇒ x ∧ y ∈ F

for x, y ∈ A. A filter F is proper if ⊥ /∈ F . A filter F is prime if it is proper and

x ∨ y ∈ F =⇒ x ∈ F or y ∈ F

(for x, y ∈ A). We restrict this notion even further.

2.3 DEFINITION. Let A be a frame. A filter P on A is completely prime if it is proper
and ∨

X ∈ P =⇒ X ∩ P 6= ∅
for each X ⊆ A. �
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By considering a pair X = {x, y} we see that each completely prime filter is prime.
However, a prime filter need not be completely prime.

Here is why these filters are useful.

2.4 LEMMA. For each frame A there are bijective correspondences between the following
gadgets on A.

(↑) Completely prime filters P on A.

(↔) Frame characters χ on A.

(↓) Elements p of A that are ∧-irreducible.

These correspondences are given by

x ≤ p⇐⇒ χ(x) = 0 χ(x) = 1 ⇐⇒ x ∈ P

for x ∈ A.

Proof. The proof consists of a series of small observations.

Consider a completely prime filter P on A, and let χ be the suggested function. We
have

χ(x) = 1 ⇐⇒ x ∈ P
χ(x) = 0 ⇐⇒ x /∈ P

for x ∈ A. In other words χ is the characteristic function of P as a subset of A. We must
show that χ is a frame character, that is we must show the four conditions listed above.

Remembering that χ can take only two values, these conditions translate into

> ∈ P ⊥ /∈ P
x ∧ y ∈ P ⇐⇒ x ∈ P and y ∈ P

∨
X ∈ P ⇐⇒ X ∩ P 6= ∅

for x, y ∈ A and X ⊆ A. The various properties of P ensure that these conditions hold.

Consider a frame character χ on A, and let P be the suggested subset. Thus χ and P
are related by the two equivalences give in the previous block. We must show that P is
a completely prime filter on A.

Since χ(>) = 1, we have > ∈ P , and hence P is non-empty.
Consider x, y ∈ A with x ≤ y and x ∈ P . Then

1 = χ(x) ≤ χ(y)

to give χ(y) = 1, and hence y ∈ P . This shows that P is an upper section of A.
Consider x, y ∈ P . Then

χ(x ∧ y) = χ(x) ∧ χ(y) = 1 ∧ 1 = 1

and hence x ∧ y ∈ P . This shows that P is a filter on A.
Since χ(⊥) = 0 we have ⊥ /∈ P , and hence P is proper.
Finally, consider X ⊆ A with

∨
X ∈ P . By way of contradiction suppose X ∩ P = ∅.

Thus χ(x) = 0 for each x ∈ X, so that

χ(
∨
X) =

∨
χ→(X) =

∨
{0} = 0

13



and hence
∨
X /∈ P , which is the contradiction.

From the constructions involved it is immediate that this sets up a bijective corre-
spondence between completely prime filters and frame characters on A.

Consider a ∧-irreducible element p on A, and let χ be the suggested function. We
have

χ(x) = 1 ⇐⇒ x � p

χ(x) = 0 ⇐⇒ x ≤ p

for x ∈ A. We must show that χ is a frame character, that is we must show the four
conditions listed above.

Remembering that χ can take only two values, these conditions translate into

> � p ⊥ ≤ p

x ∧ y ≤ p ⇐⇒ x ≤ p or y ≤ p
∨
X ≤ p ⇐⇒ (∀x ∈ X)[x ≤ p]

for x, y ∈ A and X ⊆ A. The right hand properties are trivial, and the ∧-irreducibility
of p ensure the left hand properties.

Consider a frame character χ on A. Let

X = {x ∈ A |χ(x) = 0}

so that
χ(

∨
X) =

∨
χ→(X) =

∨
{0} = 0

and hence the supremum
p =

∨
X

belongs to X. Thus
x ≤ p⇐⇒ χ(x) = 0

where the implication ⇒ holds be the previous argument. We must show that p is ∧-
irreducible.

Since χ(>) = 1 we have > � p, that is p 6= >.
Consider x, y ∈ A with x ∧ y ≤ p. Then

χ(x) ∧ χ(y) = χ(x ∧ y) = 0

so that
χ(x) = 0 or χ(y) = 0

and hence
x ≤ p or y ≤ p

to give the required result.

Using these calculations we see that this sets up a bijective correspondence between
the ∧-irreducible elements of A and frame the characters on A. �

Amongst other things Lemma 2.4 shows that for each frame A we have a bijective
correspondence

pt(A) Frm [A,2]

p � - p∧

14



between the point space of A (as the set of ∧-irreducible elements) and the set of frame
characters on A. For convenience we use a similar notation as with the space correspon-
dence, Thus

x ≤ p⇐⇒ p∧(x) = 0

for each x ∈ A.
As with the space case, we can take this a bit further.
Consider a morphism

B
h - A

between frames. This induces a continuous map h? (h∗ restricted to pt(A)) between the
spaces. In turn this induces a function h◦ between the two sets of frame characters.

p � - p∧

A pt(A) Frm [A,2]

B

h
6

pt(B)

h?

?
Frm [B,2]

h◦

?

q � - q∧

For each p ∈ pt(A) we have
h◦(p∧) = h∗(p)

∧

so that
h◦(p∧)(b) = 0 ⇐⇒ h∗(p)

∧(b) = 0

⇐⇒ b ≤ h∗(p)

⇐⇒ h(b) ≤ p ⇐⇒ p∧(h(b)) = 0

to give
h◦(p∧)(b) = p∧(h(b))

for each b ∈ B. Thus
h◦(p∧) = p∧ ◦ h

for each p ∈ pt(A).
These calculations almost prove the following analogue of Lemma 2.2.

2.5 LEMMA. The contravariant functor

Frm
pt - Top

is naturally isomorphic to the ‘enriched’ hom-functor Frm [−,2].

As with Lemma 2.2 we won’t go into the precise meaning of this result. However, you
might like to check that Frm [A,2] is a subspace of Set [A,2] furnished with the product
topology lifted from the sierpinski topology on 2.
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These bijective correspondences can be used to explain Theorem 1.14. For each frame
A and space S we have several correspondences.

f � - φ

Frm [A,OS] Top [S, pt(A)]

Frm [A,Top [S,2]]
?

6

Top [S,Frm [A,2]]
?

6

f∧ � - φ∧

Across the top we have the correspondence of Theorem 1.14. Down either side we have
the correspondences induced by the character correspondences

OS � - Top [S,2] pt(A) � - Frm [A,2]

respectively. These give

f∧(a) = f(a)∧ φ(s)∧ = φ∧(s)

and in particular

f∧(a)(s) = 1 ⇐⇒ s ∈ f(a) a ≤ φ(s) ⇐⇒ φ∧(s)(a) = 0

for each a ∈ A and s ∈ S. Combining these three gives the correspondence across the
bottom. Thus we have

f∧(a)(s) = φ∧(s)(a)

for each a ∈ A and s ∈ S.
These calculations indicate that the contravariant adjunction produced in Section 1 is

not the result of a ad hoc construction. At the set level it is nothing more than

[A −→ [S −→ 2]] ∼= [A× S −→ 2] ∼= [S × A −→ 2] ∼= [S −→ [A −→ 2]]

where we curry the functions on the outside and chip the inputs on the inside. However,
as we have seen, this is not the whole story, we have to furnish pt(A) and OS in the
appropriate way, and make sure the correspondences respect the furnishings.

The most important result in this section is Lemma 2.4. In Section 1 we constructed
pt(A) using the ∧-irreducible elements p of A as the points. We could equally well use
the frame characters χ of A, or the completely prime filters P on A. In these terms the
indexing morphism

A
UA - pt(A)

is given by
(↑) P ∈ U(a) ⇐⇒ a ∈ P
(↔) χ ∈ U(a) ⇐⇒ χ(a) = 1

(↓) p ∈ U(a) ⇐⇒ a � p

for each a ∈ A. In particular, (↑) is just a standard filter space construction. Each of
these versions is useful at various times, but it is the ∧-irreducible version that we use
most often.
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3 Reflections on sobriety

Theorem 1.14 sets up a contravariant adjunction between the two categories Frm and
Top . As usual, any such adjunction can be described in several different ways, and often
such rephrasings brings out some hidden features.

Each frame A has a canonical morphism

A
UA - Opt(A)

to the topology of its point space. We call this the spatial reflection of A. When it was
first introduced, in Definition 1.8, this terminology was not justified. A reformulation of
Theorem 1.14 provides the missing justification.

3.1 THEOREM. Let A be a frame. For each space S and frame morphism

A
f - OS

there is a unique continuous map

S
φ - pt(A)

such that

A
f - OS

Opt(A)

φ←

-

UA -

commutes.

Proof. We are looking for a continuous map φ such that

φ← ◦ Ua = f

holds. In other words, we require

s ∈ f(a) ⇐⇒ s ∈ φ←(U(a)) ⇐⇒ φ(s) ∈ U(a) ⇐⇒ a � φ(s)

for all a ∈ A and s ∈ S. Thus φ is nothing more than the transpose of f across the
adjunction of Theorem 1.14. �

Each contravariant adjunction has a pair of unit arrows obtained by transposing the
appropriate identity arrow across the adjunction. By Theorem 1.14 we know that the
frame unit is just the spatial reflection morphism, and the continuous map

S - pt(OS)

s - s−
′

is the space unit. Is this a reflection of any kind? In this section we answer that question.
What is the target space pt(OS) of this space unit? The obvious answer is that it is

a homeomorphic copy of the source space S. This is incorrect for two reasons.
By Lemma 1.10 we know that each point space pt(A) is T0. Thus if S is not T0 then

it can not be homeomorphic to pt(OS).
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3.2 LEMMA. For a space S the space unit of S is injective precisely when S is T0.

Proof. A simple argument shows that a space S is T0 precisely when

s− = t− =⇒ s = t

for s, t ∈ S. �

This may look like a bit of nit-picking, for who wants to deal with non-T0 spaces?
However, even for a T0 space the space unit need not be surjective, and that is a much
more interesting story.

3.3 DEFINITION. A subset X of a space S is closed irreducible if it is closed, non-empty,
and if

U meets U
X meets V

}
=⇒ X meets U ∩ V

holds for all U, V ∈ OS. �

Observe that X is closed irreducible in S precisely when X ′ is a ∧-irreducible member
of the frame OS. This connection lies at the heart of much of what follows.

Examples of closed irreducible subsets of a space S are easy to find. For each point
s ∈ S and open set U ∈ OS we have

s− meets X ⇐⇒ s ∈ U

and hence the point closure s− is closed irreducible.

3.4 EXAMPLE. Let S be an infinite set, and let OS be the cofinite topology on OS.
Thus, apart from S the closed sets are precisely the finite subsets of S. In particular,
each singleton is closed, so S is T1.

Suppose U, V ∈ OS both meet S, that is both are non-empty. Then U ′ ∪ V ′ is finite,
and hence

U ∩ V = (U ′ ∪ V ′)′

is non-empty, and so meets S. This shows that S is closed irreducible. However, S is not
a point closure (since it is not a singleton). �

We may regard the existence of a closed irreducible subset which is not a point closure
as a defect of the parent space, and look for a corrective measure.

3.5 DEFINITION. A space S is sober if each closed irreducible subset X has a unique
generic point, that is X = s− for a unique point s. �

A few simple arguments show that

T2 =⇒ Sober =⇒ T0

and neither of these implications is reversible. It is the T0 property that ensures that a
closed irreducible set can have no more than one generic point. The two properties

T1 Sober

are incomparable, a space can have one property without the other.
The following result extends part of Lemma 1.10.
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3.6 THEOREM. For each frame A the point space pt(A) is sober.

Proof. By Lemma 1.10 the space pt(A) is T0, so it suffices to show that each closed
irreducible subset of pt(A) is a point closure.

We use the kernel s of the spatial reflection

A
U - Opt(A)

of A. Thus
x ≤ s(a) ⇐⇒ U(x) ⊆ U(a)

for x, a ∈ A.
Suppose X is closed irreducible in pt(A). Since X ′ ∈ Opt(A) we have

X ′ = U(a)

for at least one a ∈ A. Let p = s(a), so that both

X ′ = U(p) s(p) = p

hold.

We show first that p is ∧-irreducible in A.
We have p 6= >, for otherwise X ′ = U(>) = S, and hence X is empty.
We have

X meets U(x) ⇐⇒ U(x) ⊆ X ′ = U(p) ⇐⇒ x � s(p) = p

for each x ∈ A. Thus, for x, y ∈ A, we have

x � p
y � p

}
=⇒

{
X meets U(x)
X meets U(y)

}
=⇒ X meets U(x) ∩ U(y) = U(x ∧ y) =⇒ x ∧ y � p

which, by taking the contrapositive, shows that p is ∧-irreducible.

Secondly, we use specialization order of pt(A), as described in Lemma 1.10, to show
X = p−. For each q ∈ pt(A) we have

q ∈ X ⇐⇒ q /∈ U(p) ⇐⇒ p ≤ q ⇐⇒ q v p⇐⇒ q ∈ p−

to give the required result. �

This result shows that for a space S, if the canonical assignment

S - pt(OS)

is a homeomorphism then S must be sober. We will show the converse of this. More
generally, we will show that the assignment is the sober reflection of S. To do that it
is convenient to describe pt(OS) is a slightly different way. In fact, we use the original
construction of the sober reflection.

So far we have viewed the points of pt(OS) as those open sets of S which are ∧-
irreducible in OS (with a nod towards the frame characters on OS and the completely
prime filters on OS). But an open set of S is ∧-irreducible precisely when its complement
is closed irreducible complement in S. We use these closed sets as the new points.
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3.7 DEFINITION. For a space S let sob(S) be the family of closed irreducible subsets of
S. For U ∈ OS let \(U) be the subset of sob(S) given by

X ∈ \(U) ⇐⇒ X meets U

(for X ∈ sob(S)). �
We have seen this construction before, but in a slightly different guise. Some of the

notation in the next paragraph is a bit hairy, but once we have got through it, we can
forget it.

For a space S we have the indexing morphism

OS
UOS- Opt(OS)

of the topology on pt(OS). Temporarily, for U ∈ OS let ?(U) be the image of – and this
is the hairy bit – the open set

UOS(U)

across the bijection to sob(S). Thus, for X ∈ sob(S) we have

X ∈ ?(U) ⇐⇒ X ′ ∈ UOS(U) ⇐⇒ U * X ′ ⇐⇒ X meets U

so that ?(U) is nothing more than \(U).
You may check directly that

Osob(S) = {\(U) |U ∈ OS}
is a topology on sob(S) with

OS
\ - Osob(S)

as a surjective frame morphism. Furthermore, we have a homeomorphism

pt(OS) � - sob(S)

obtained by taking complements, and the assignment

S
ς - sob(S)

s - s−

is continuous.

3.8 THEOREM. Let S be a space.
(a) The canonical frame morphism

OS \ - Osob(S)

is an isomorphism.
(b) The specialization order on sob(S) is given by inclusion (of the closed irreducible

subsets of S). In particular, sob(S) is T0.
(c) The space sob(S) is sober.
(d) The canonical continuous map

S
ς - sob(S)

is injective precisely when S is T0.
(e) This continuous map is a homeomorphism precisely when S is sober.
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Proof. We need not give all the details but some of them are worth looking at.

(a) We stated above (and it is not hard to prove) that the frame morphism \(·) is
surjective. Thus we need to check that it is injective. To do this we show

\(V ) ⊆ \(U) =⇒ V ⊆ U

for U, V ∈ OS. To this end suppose \(V ) ⊆ \(U) and consider s ∈ V . Then s− ∈ sob(S)
and s− ∈ \(V ) (since the two sets meet at s). Thus s− ∈ \(U), so that s− meets U , to
give some point t (of S) with t ∈ s−∩U . Remembering that each open in OS is an upper
section in the specialization order of S, we have s ∈ U , to give the required result.

(b) To describe the specialization order of sob(S), consider X, Y ∈ sob(S). We have

Y v X

precisely when X belongs to each open set of sob(S) to which Y belongs. Thus

Y v X ⇐⇒ (∀U ∈ OS)[Y ∈ \(U) =⇒ X ∈ \(U)]

⇐⇒ (∀U ∈ OS)[Y meets U =⇒ X meets U ]

⇐⇒ (∀U ∈ OS)[X ∩ U ′ = ∅ =⇒ Y ∩ U ′ = ∅]
⇐⇒ (∀Z ∈ CS)[X ⊆ Z =⇒ Y ⊆ Z] ⇐⇒ Y ⊆ X

to give the required result.
This space sob(S) is T0 since its specialization is a partial ordering.

(c) Since sob(S) is T0, it suffices to show that each closed irreducible subset (of sob(S))
has a generic point.

To this end consider any closed irreducible subset Z of sob(S). This has the form

Z = \(Z ′)′

for some Z ∈ CS. The tactic is to show first that Z is closed irreducible in S, so that
Z ∈ sob(S), and then show that Z is a generic point of Z.

We have
X ∈ Z ⇐⇒ X /∈ \(Z ′) ⇐⇒ X ∩ Z ′ = ∅ ⇐⇒ X ⊆ Z

that is
X ∈ Z ⇐⇒ X ⊆ Z

for X ∈ sob(S). (Remember that, as yet, Z is just a closed subset of S whereas X is a
closed irreducible subset.)

This equivalence ensures that

Z meets \(U) ⇐⇒ Z meets U

for U ∈ OS. If Z meets \(U) then there is some X ∈ Z ∩ \(U), that is X ⊆ Z with
X ∩ U 6= ∅, and so Z meets U (at least in the same places that X does). Conversely,
suppose Z meets U , say at s ∈ Z ∩ U . But now s− ⊆ Z, so that s− ∈ Z, and s− ∈ \(U),
to show that Z meets \(U).

The set Z is closed irreducible in sob(S), and hence is non-empty. This gives some
X ∈ Z with X closed irreducible in S. In particular, X ⊆ Z and X is non-empty, to

21



show that Z is non-empty. (Equivalently, since Z meets \(S) we know Z meets S, and
hence Z is non-empty.)

Now suppose Z meets both U and V (from OS). Then Z meets both \(U) and \(V )
so that (since Z is closed irreducible)

Z meets \(U) ∩ \(V ) = \(U ∩ V )

and hence Z meets U ∩ V . This shows that Z is closed irreducible in S.
Finally, for X ∈ sob(S) we have

X ∈ Z ⇐⇒ X ⊆ Z ⇐⇒ X v Z

to show that Z is the closure of Z in sob(S).

(d) This is just Lemma 3.2.

(e) If S and sob(S) are homeomorphic then S is sober by part (c).
Conversely, suppose S is sober. Then, by construction of sob(S), the assignment is a

bijection. For each s ∈ S and U ∈ OS, we have

s ∈ U ⇐⇒ s− meets U ⇐⇒ s− ∈ \(U)

to show that the assignment is a homeomorphism. �

The functorial properties of the construction sob(·) are best encapsulated by the fol-
lowing factorization result.

3.9 THEOREM. For each continuous map

S
φ - T

from a space S to a sober space T , there is a unique continuous map

sob(S)
φ]

- T

such that

S
φ - T

sob(S)

φ]

-

ς -

commutes.

Proof. As usual with a result such as this, we must show there is at most one fill-in
arrow, and at least one fill-in arrow. Unusually, both part need a little bit of thought.

For the uniqueness we first make an observation about ς. We show that

ς←(\(U)) = U
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for U ∈ OS. (In fact, ς← is the inverse of \(·).) For each s ∈ S we have

s ∈ ς←(\(U)) ⇐⇒ s− ∈ \(U) ⇐⇒ s
−

meets U ⇐⇒ s ∈ U

to give the observation.
Now suppose there is a parallel pair

sob(S)
ψ -

θ
- T

of continuous maps such that
ψ ◦ ς = φ = θ ◦ ς

hold. For each W ∈ OT the sets ψ←(W ) and θ←(W ) are open in sob(S), and hence

ψ←(W ) = \(U) θ←(W ) = \(V )

for some U, V ∈ OS. But now

U = ς←(\(U)) = (ς← ◦ ψ←)(W ) = φ←(W ) = (ς← ◦ θ←)(W ) = ς←(\(V )) = V

and hence
ψ←(W ) = \(U) = \(V ) = θ←(W )

holds.
Now, by way of contradiction, suppose ψ 6= θ. We have ψ(X) 6= θ(X) for some

X ∈ sob(S). Since T is T0 there is some W ∈ OT which contains exactly one of these
points, say

ψ(X) ∈W θ(X) /∈W
(by symmetry). But now

X ∈ ψ←(W ) X /∈ θ←(W )

which is the contradiction.

To show the existence of a fill-in arrow it is worth remembering that the continuous
map induces an adjoint pair

OS � φ∗

φ∗
- T

where
φ∗(V ) = φ←(V ) φ∗(U) = φ→(U ′)−

′

for V ∈ OT and U ∈ OS.
For X ∈ sob(S) consider the closed set

φ→(X)−

of T . We have

φ→(X)− meets V ⇐⇒ φ→(X) meets V ⇐⇒ X meets φ←(V )
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for each V ∈ OT . Using this a couple of simple arguments shows that φ→(X)− is closed
irreducible in T . Since T is sober this set has a unique generic point. Let this be φ](X).
Thus we have a function

φ] : sob(S) - T

such that
φ→(X)− = φ](X)−

for each X ∈ sob(S).
For X ∈ sob(S) and V ∈ OT we have

φ](X) ∈ V ⇐⇒ φ](X)− meets V ⇐⇒ φ→(X)− meets V ⇐⇒ X meets φ←(V )

so that
X ∈ φ]←(V ) ⇐⇒ X ∈ \(φ←(V ))

to show
φ]←(V ) = \(φ←(V ))

and hence φ] is continuous.
With X = s− for s ∈ S we have

φ](s−) ∈ V ⇐⇒ s
−

meets φ←(V ) ⇐⇒ s ∈ φ←(V ) ⇐⇒ φ(s) ∈ V

for each V ∈ OT . Since T is T − 0, this gives

(φ] ◦ ς)(s) = φ](s−) = φ(s)

to show that the triangle does commute. �

You probably need a drink after all that.

4 The ideal completion of a poset

More often than not this example is not described in topological terms and, in conse-
quence, can look a bit odd. Here I will first give a brief account of the non-topological
version and then show how it is an example of a sober reflection.

4.1 DEFINITION. Let S be a poset.
A subset X ⊆ S is directed if X 6= ∅ and for each x, y ∈ X there is some z ∈ X with

x, y ≤ z.
The poset S is directedly complete if

∨
X exists (in S) for each directed X ⊆ S. �

We consider how we might convert an arbitrary poset into a directedly complete poset
in some ‘universal’ manner. Of course, the precise meaning of ‘universal’ is given using
standard categorical ideas.

We need the appropriate morphisms

S
φ - T

between, on the one hand, arbitrary posets and, on the other hand, directedly complete
posets.
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4.2 DEFINITION. A monotone map φ between posets S, T (as above) is a function, as
indicated, such that

x ≤ y =⇒ φ(x) ≤ φ(y)

for x, y ∈ S.
Let Pos be the category of posets and monotone maps.

A d-continuous map φ between directedly complete, posets S, T (as above) is a mono-
tone map, as indicated, such that

φ(
∨
X) =

∨
φ→(X)

for each directed X ⊆ S.
Let Dpo be the category of directedly complete posets and d-continuous maps. �

Strictly speaking we should check that Pos and Dpo are categories, that is both
monotone maps and d-continuous maps are closed under composition. However, that is
more or less trivial. The only thing to remember is that for a monotone map φ, if X is a
directed subset of the source, then φ→(X) is a directed subset of the target.

You may wonder why the word ‘continuous’ is used here. In fact, a function φ between
directedly complete posets is d-continuous in the sense of Definition 4.2 precisely when
it is continuous relative to certain carried topologies. Furthermore, a function φ between
arbitrary posets is monotone precisely when it is continuous relative to certain other
carried topologies. We look at this later.

In the definition of d-continuous we stated explicitly that the map should be monotone.
However, a simple argument shows that this is ensured by the continuity property.

[A directedly complete poset is often called a domain. However, the use of that word
for this notion is not one of the better ideas that someone has had.]

We have two categories and an obvious forgetful functor

Pos � Dpo

which forgets the completeness properties of a directedly complete poset and forgets the
continuity property of a d-continuous map. We show that this functor has a left adjoint,
that is we describe a reflection of Pos into Dpo .

As you read this next bit you may want to keep an eye on Section 5 of [3].

4.3 DEFINITION. Let S be a poset.
A lower section of S is a subset L ⊆ S such that

y ≤ x ∈ L =⇒ y ∈ L

(for x, y ∈ S).
Let LS be the poset of all lower sections of S under inclusion.

An ideal of S is a lower section I ∈ LS which is also directed.
Let IS be the poset of all ideals of S under inclusion. �

For each a ∈ S (a poset) let

η(a) = ↓a = {x ∈ S | x ≤ a}
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to obtain the principal ideal generated by a. It is routine to check that the assignment

S
η - IS

is monotone. We show that η has even better properties.
The poset LS is closed under arbitrary unions and intersections, and hence LS is a

complete lattice. This is not the case for IS. In fact, IS need not be closed under binary
intersections, as the following example shows.

4.4 EXAMPLE. Consider the following 4-element poset.

a b

p q

We have
↓a = {a, p, q} ↓b = {b, p, q}

whereas
↓a ∩ ↓b = {p, q}

and this is not an ideal. �

In spite of this the poset IS does have sufficient completeness to do a job for us.

4.5 LEMMA. For each poset S the associated poset IS is closed under directed unions,
and so is a directedly complete poset.

Proof. Let X be a directed subfamily of IS (that is directed in IS). The union
⋃
X

is a lower section of S, so it suffices to show that it is directed in S.
To this end consider x, y ∈

⋃
X . We have

x ∈ X ∈ X y ∈ Y ∈ X

for some ideal X, Y . Since X is directed (in IS) there is some Z ∈ X with X, Y ⊆ Z.
But now x, y ∈ Z and Z is directed (in S) to give some

x, y ≤ z ∈ Z ⊆
⋃
X

as required. �

In other words, for each poset S the poset IS of ideals is an object of Dpo . We show
it is the reflection of S in Dpo.

4.6 LEMMA. Let S be an arbitrary poset and let

IS
ψ -

θ
- T

be a parallel pair of Dpo-arrows to a Dpo-object T . If

ψ ◦ η = θ ◦ η

then ψ = θ.
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Proof. Consider any X ∈ IS and let

X = η→(X) = {↓x | x ∈ X}

to obtain X ⊆ IS such that
X =

⋃
X

holds. Since X is an ideal, and hence directed in S, we see that X is directed in IS. Thus

ψ(X) = ψ(
⋃
X ) =

∨
ψ→(X ) =

∨
(ψ ◦ η)→(X)

to give
ψ(X) =

∨
(ψ ◦ η)→(X) θ(X) =

∨
(θ ◦ η)→(X)

where the right hand equality follows by a similar argument. Finally, if ψ ◦ η = θ ◦ η then

ψ(X) =
∨

(ψ ◦ η)→(X) =
∨

(θ ◦ η)→(X) = θ(X)

and hence ψ = θ, as required. �

In the terminology of Definition 5.3 of [3], this says that the arrow η is Dpo-epic.
This simple observation provides the uniqueness part of the reflection result.

4.7 THEOREM. For each monotone map

S
φ - T

from a poset S to a directedly complete poset T , there is a unique d-continuous map

IS φ]
- T

such that

S
φ - T

IS
φ]

-

η -

commutes.

Proof. By Lemma 4.6 there is at most one such map φ].
Given an ideal X ∈ IS we find that φ→(X) is directed in T , and hence we may set

φ](X) =
∨
φ→(X)

to obtain a function φ] : IS - T . A few calculations show that this is a fill in. �

This result is the reason why the monotone map

S
η - IS

is called the ideal completion of the poset S.
Out next job is to describe the arrows of Pos and Dpo in topological terms.
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4.8 DEFINITION. Let S be a poset. Let ΥS be the family of all upper section of S. This
is the Alexandroff topology on S.

Let S be a directedly complete poset. Let OS be the family of all those upper section
U of S such that ∨

X ∈ U =⇒ X meets U

holds for each directed subset X of S. This is the Scott topology on S. �

Strictly speaking before we make this definition we should check that each of ΥS and
OS is a topology on S. The first of these is immediate and the following is the only
non-trivial part of the second.

4.9 LEMMA. Let S be a directedly complete poset. Then OS is closed under binary
intersections.

Proof. Consider U, V ∈ OS. Both of these are upper sections of S, hence so is U ∩ V .
Now suppose ∨

X ∈ U ∩ V
for some directed subset X ⊆ S. We must show that X ∩ U ∩ V is non-empty.

We have ∨
X ∈ U

∨
X ∈ V

so that, since U, V ∈ OS we have

x ∈ X ∩ U y ∈ X ∩ V

for some x, y ∈ S. Since x, y ∈ X and X is directed we have some x, y ≤ z ∈ X. But U
and V are upper sections so z ∈ U (via x) and y ∈ V (via y). Thus

z ∈ X ∩ U ∩ V

so that X meets U ∩ V , as required. �

It is always useful to have a description of the closed sets of a space. For ΥS these
are exactly the lower sections of the poset S. For OS the closed sets are a bit more
interesting. The proof of the following is little more than taking the contrapositive.

4.10 LEMMA. Let S be a directedly complete poset. Then CS is the family of the lower
sections Z which are closed under directed suprema, that is

X ⊆ Z =⇒
∨
X ∈ Z

for each directed subset X.

This description of the Scott topology in terms of the closed sets is often more useful
than the official definition in terms of open sets.

With these notions we can give a characterization of the arrows

S
φ - T

of Pos and Dpo .
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4.11 LEMMA. A function φ between posets S, T (as above) is monotone precisely when
it is continuous relative to the two carried Alexandroff topologies.

A function φ between directedly complete posets S, T (as above) is d-continuous pre-
cisely when it is continuous relative to the two carried Scott topologies.

Proof. Consider first the arbitrary poset case.
Suppose that φ is monotone (from S to T ), and consider any V ∈ ΥT . We must show

that φ←(V ) ∈ ΥS, in other words we must show that φ←(V ) is a upper section of S. To
this end consider x ∈ φ←(V ) and x ≤ y (in S). Then φ(x) ∈ V and φ(x) ≤ φ(y) (since φ
is monotone), to give φ(y) ∈ V (since V is an upper section of S), and hence y ∈ φ←(V ),
as required.

Next suppose that φ is continuous relative to the two A-topologies, and consider x ≤ y
in S. The set V = ↑φ(x) is in ΥT , so that φ←(V ) ∈ ΥS, that is φ←(V ) and upper section
of S. But φ(x) ∈ V , so that x ∈ φ←(V ), to give y ∈ φ←(V ), and hence φ(y) ∈ V , as
required.

Next we consider the directedly complete poset case. Thus we assume that S and T
are directedly complete.

Suppose that φ is d-continuous (from S to T ), and consider any V ∈ OT . We must
show that φ←(V ) ∈ OS. Since each d-continuous map is monotone, this set is certainly
an upper section of S. Consider any directed subset X of S with

∨
X ∈ φ←(V ). Then∨

φ→(X) = φ(
∨
X) ∈ V

so that φ→(X) meets V (since φ→(X) is directed in T and V ∈ OT ). This gives some
x ∈ X with φ(x) ∈ V , and hence X meets φ←(V ) (at x), to give the required result.

Finally suppose that φ is continuous relative to the two Scott topologies. A simple
argument (as in the first part) shows that φ is monotone. Consider any directed subset
X of S. The monotonicity gives ∨

φ→(X) ≤ φ(
∨
X)

so it suffices to verify the converse comparison. Given a directed subset X of S let

c =
∨
φ→(X)

so that ↓c ∈ CS and hence
Z = φ←(↓b) ∈ CS

(since φ is continuous). But X ⊆ Z, so that
∨
X ∈ Z (by Lemma 4.10), and hence

φ(
∨
X) ≤ c =

∨
φ→(X)

as required. �

This result shows that both Pos and Dpo are subcategories of Top . In particular,
when viewed as a space each poset S has a sober reflection sob(S), as described in Section
3. We already know what this is.

4.12 LEMMA. Let S be a poset with A-topology ΥS. The closed irreducible subsets of this
space are precisely the ideals of S.
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Proof. Suppose first that X ⊆ S is closed irreducible in S. Then X is certainly a lower
section of S (since it is a closed subset), and non-empty (since every close irreducible subset
is non-empty). Consider x, y ∈ X. Both the open sets U = ↑X and V = ↑y meet X (at
x and y, respectively), and hence X meets ↑x∩ ↑y. This gives some z ∈ X with x, y ≤ z,
to show that X is directed.

Conversely, suppose X is an ideal of S. Then X is a non-empty lower section of S,
and hence is a non-empty closed subset. To show that X is irreducible suppose X meets
both of the open sets U and V . This gives some

x ∈ X ∩ U y ∈ Y ∩ V

and hence we have some x, y ≤ z ∈ X (since X is directed). But both U and V are upper
sections of S, so that z ∈ X ∩ U ∩ V , to show that X meets U ∩ V , as required. �

This result shows that for each poset S we have

sob(S) = IS

as sets. Both of these carry canonical topologies, and we show these are the same topology.
On the left we have a the sober reflection topology, that is a typical closed set has the
form

\(L′)′

for L ∈ LS (a typical closed set of S). On the right we have the Scott topology, that
is a typical closed set is a lower section of IS which is closed under unions of directed
subfamilies. We have to match the different closed sets.

First of all an unravelling of the definitions gives the following.

4.13 LEMMA. For each L ∈ LS we have

X ∈ \(L′)′ ⇐⇒ X ⊆ L

for each X ∈ IS.

This description make the following almost trivial.

4.14 COROLLARY. For each L ∈ LS the family \(L′)′ is closed in IS.

Proof. Trivially the family \(L′)′ is a lower section of IS. Consider any directed
subfamily X ⊆ \(L′)′. For each X ∈ X we have X ⊆ L, so that

⋃
X ⊆ L, and hence⋃

X ⊆ \(L′)′. Thus \(L′)′ is closed in the S-topology on IS. �

[You may be wondering where the directedness of X is used in the last proof. By
Lemma 4.5 it ensures that

⋃
X is an ideal, not just an arbitrary lower section of S.]

The main job now is to show that each S-closed subfamily of IS has the form \(L′)′

for some L ∈ LS.
To this end consider Z ∈ C(IS), that is Z is a S-closed subfamily of IS. We show

that
L =

⋃
Z
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is the appropriate lower section of S. Since Z is a family of lower sections of S, we have
L ∈ LS. Also

X ∈ Z =⇒ X ⊆ L

for X ∈ IS. Thus it suffices to verify the converse of this implication.

4.15 LEMMA. In the notation above, we have

X ⊆ L =⇒ X ∈ Z

for each X ∈ IS.

Proof. Consider any ideal X ⊆ L. Let

X = {↓x | x ∈ X}

so that
X =

⋃
X

and X is a family of ideals of S. We show that

X ⊆ Z X is directed in IS

so that
X =

⋃
X ∈ Z

(since Z is S-closed in IS).
Consider any member ↓x of X . Thus

x ∈ X ⊆ L =
⋃
Z

to give some ideal Z ∈ Z such that x ∈ Z. But now

↓x ⊆ Z ∈ Z

and Z is a lower section of IS, so that ↓x ∈ Z, to verify the left hand requirement.
To show that X is directed consider any pair ↓x, ↓y of members of X . Then x, y ∈ X

and we remember that X is an ideal, so that we have some x, y ≤ z ∈ X, and hence

↓x, ↓y ⊆ ↓z ∈ X

to give the required result. �

The result of this section are not central to frame theory, but they do give a small
illustration of how frames can support lots of different things.
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5 The spectrum of a lattice

For the second example we look at the result which is the precursor of much that happens
in frame theory, namely the Stone representation of a d-lattice. In Subsection 5.3 of [3] we
describe the reflection

D - ID

form Dlt to Frm . For each d-lattice D the poset ID if all ideals of D is a frame, and
the assignment

D
ηD - ID

a - ↓a
is a lattice embedding. Furthermore, ηD has a certain universal property that ensures it
is the reflection of D into Frm .

In this section we show how this is related to the Stone representation of D, and to
various other frame theoretic constructions.

Let us recall the salient features of Stone’s result.
Let D be a d-lattice. We attach to D a certain topological space

spec(D)

the spectrum of D, and we set up an embedding

D
δ - Ospec(D)

into the carried topology to give a concrete representation of D. Here we will first describe
the original, more common, construction of spec(D). Then we will show that

spec(D) = pt(ID)

(as spaces) and indicate how the embedding δ arises. In a full account we would also
characterize the spaces that arise as spectra, and characterize the range of δ and so
describe D as a family of sets under union and intersection. However, that would take us
too far away from our central topic.

[The spaces that arise in this way are, quite naturally, called spectral spaces. These
spaces also arise as the spectra of commutative rings. This coincidence is more than a
curiosity, but that is a story for another day.]

I suppose we should start at the beginning. It will help if you have Subsection 5.3 of
[3] to hand, and later we will look at Block 5.5.3.

A d-lattice is a bounded distributive lattice. We fix such a d-lattice D throughout this
section. Recall that an ideal of D is a non-empty lower section I of D such that

x, y ∈ I =⇒ x ∨ y ∈ I

for x, y ∈ D. An ideal I is proper if > /∈ I. An ideal I is prime if it is proper and

x ∧ y ∈ I =⇒ x ∈ I or y ∈ Y

(for x, y ∈ D).
With these we can describe one version of the construction of the spectrum
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5.1 DEFINITION. let D be a d-lattice.
Let spec(D) be the set of prime ideals P of D.
For each element a ∈ D we use

P ∈ UD(a) ⇐⇒ a /∈ P

(for P ∈ spec(D)) to extract a subset of spec(D). �

The following is the essence of the embedding δ.

5.2 LEMMA. For each d-lattice D we have

UD(>) = spec(D) U(⊥) = ∅
UD(a ∧ b) = UD(a) ∩ UD(b) UD(a ∨ b) = UD(a) ∪ UD(b)

for each a, b ∈ D.

Proof. The top two equalities are immediate.
For the bottom left, from the primeness of P ∈ spec(D) we have

P /∈ UD(a ∧ b) ⇐⇒ a ∧ b ∈ P ⇐⇒ a ∈ P or b ∈ P ⇐⇒ P /∈ UD(a) or P /∈ UD(b)

which, after taking the contrapositive, gives the equality.
For the bottom right, since P ∈ spec(D) is an ideal we have

P /∈ UD(a ∨ b) ⇐⇒ a ∨ b ∈ P ⇐⇒ a ∈ P and b ∈ P ⇐⇒ P /∈ UD(a) and P /∈ UD(b)

which, after taking the contrapositive, gives the equality. �

This result shows that
U→D (D) = {UD(a) | a ∈ D}

is a base for a topology on spec(D). This is the one that we want.

5.3 DEFINITION. For each d-lattice D the set spec(D) furnished with the topology gen-
erated by U→D (D) is the spectrum of D. �

Lemma 5.2 also gives the following.

5.4 COROLLARY. For each d-lattice D the assignment

D
UD- Ospec(D)

is a lattice morphism.

This result does not claim that UD is surjective. That is because, in general, it isn’t.
The result does not claim that UD is injective, even though it is. The proof of this requires
an axiom of choice in the form of a separation principle. The following is proved in the
usual way as an application of Zorn’s Lemma.
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5.5 Separation Principle. Let a ∈ D be an element and let I ∈ ID be an ideal of the
d-lattice D, and suppose a /∈ I. Then

a /∈ P I ⊆ P

for some prime ideal P of D.

If you think you have seen something like this before, then have a look at item 5.28
of [3]. We will look at the connection between the two later.

A simple application of this principle shows that the morphism UD is an embedding.

5.6 LEMMA. For each d-lattice D with associated morphism

D
UD- Ospec(D)

we have
UD(a) ⊆ UD(b) =⇒ a ≤ b

for each a, b ∈ D. In particular, UD is an embedding.

Proof. In fact, we prove the contrapositive. Thus consider elements a, b ∈ D with
a � b, Then a /∈ ↓b and so, by the Separation Principle 5.5 we have

a /∈ P b ∈ P

for some prime ideal P of D. But now

P ∈ UD(a) P /∈ UD(b)

to give UD(a) * UD(b), as required. �

We now have two embeddings

D
ηD - ID D

UD- Ospec(D)

of D into a frame, where the right hand one is clearly spatial. What the connection
between these? To answer that we extend the second one and use the same notation.

5.7 DEFINITION. For a d-lattice D let

ID UD- Ospec(D)

be the assignment given by
P ∈ UD(I) ⇐⇒ I * P

for each P ∈ spec(D) and I ∈ ID. �

Actually, we are jumping the gun a little here. Certainly the definition produces a
subset UD(I) ⊆ spec(D), but how do we now this is open? It’s because

UD(I) =
⋃
{UD(a) | a ∈ I}

and this right hand side is open. Notice also that for a ∈ D we have

UD(↓a) = UD(a)

so that the two uses of ‘UD’ will not cause too much confusion.
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5.8 LEMMA. For a d-lattice D the assignment

ID UD- Ospec(D)

is a surjective frame morphism.

Proof. Trivially, the assignment is monotone, and a simple argument gives

UD(I) ∩ UD(J) = UD(I ∩ J)

for I, J ∈ ID.
Consider any J ⊆ ID. We verify that

UD(
∨
J ) ⊆

⋃
{UD(J) | J ∈ J }

which more or less shows that UD is a frame morphism. (We shouldn’t forget the ex-
tremes.)

Consider any
P ∈ UD(

∨
J )

so we must produce some J ∈ J } with P ∈ UD(J). To do that we remember how
∨
J is

computed in ID.
We have ∨

J * P

to give some a ∈ D with
a ∈

∨
J a /∈ P

and hence, by the left hand condition, we have

a ≤ b1 ∨ · · · ∨ bn bi ∈ Ji ∈ J

for some selection from J and members of these. Since a /∈ P we have some bi /∈ P to
give Ji * P , and hence

P ∈ UD(Ji) ⊆
⋃
{UD(J) | J ∈ J }

as required.
It remains to show that the assignment is surjective. A typical open set of spec(D)

has the form
UD(X) =

⋃
{UD(x) | x ∈ X}

for a subset X ⊆ D. An easy calculation shows that

UD(X) = UD(〈X〉)

where 〈X〉 is the ideal of D generated by X. �

We have a surjective frame morphism, so the obvious next step is to locate the kernel.
We can do better than that. The proof of the following extends that of Lemma 5.6.

5.9 THEOREM. For a d-lattice D the assignment

ID
UD- Ospec(D)

is a frame isomorphism.
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Proof. Given Lemma 5.8 it suffices to show

UD(J) ⊆ UD(I) =⇒ J ⊆ I

for ideals I, J of D. To do that we modify the argument of the proof of Lemma 5.6. As
there, we prove the contrapositive.

Suppose J * I. There is some element a with

a ∈ J a /∈ I

and hence a use of the Separation Principle 5.5 gives

a /∈ P I ⊆ P

for some prime ideal P . But now

J * P I ⊆ P

so that
P ∈ UD(J) P /∈ UD(I)

for the required result. �

You may have notice a certain similarity between the constructions of

spec(D) pt(A)

the spectrum of a d-lattice and the point space of a frame. In fact, the two construc-
tions can be done in parallel, and even viewed as two instances of a single construction.
Everything is generated using the schizophrenic object 2. We can illustrate that using
Theorem 5.9.

For each d-lattice D the two frames

ID Ospec(D)

are isomorphic, and so have essentially the same point space. That of Ospec(D) is just
the parent space spec(D) (since this is sober). This must also be the point space of ID.
We can verify this directly.

Remember that the points of ID are those ideals which are ∩-irreducible in ID.

5.10 LEMMA. For each d-lattice D we have

spec(D) = pt(ID)

(as sets).

Proof. Consider P ∈ spec(D, so we must show that P is ∩-irreducible in ID. Certainly
P 6= D, since P is proper. Thus we must verify

I ∩ J ⊆ P =⇒ I ⊆ P or J ⊆ P
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for ideals I, J ∈ ID. To do this we use the contrapositive. Thus suppose

I * P and J * P

so that
x ∈ I, x /∈ P y ∈ J, y /∈ P

for some x, y ∈ D. Since P is prime this gives z = x∧ y /∈ P . But z ≤ x, y, so that z ∈ I
and z ∈ J , and hence I ∩ J * P (as witnessed by z).

Conversely, consider P ∈ pt(ID), so we must show that P is prime. Certainly P 6= D,
so we must verify

x ∧ y ∈ P =⇒ x ∈ P or y ∈ P
for x, y ∈ D. For such x, y let

I = ↓x J = ↓y
so that

I ∩ J = ↓(x ∧ y)
and hence

x ∧ y ∈ P =⇒ I ∩ J ⊆ P =⇒ I ⊆ P or J ⊆ P =⇒ x ∈ P or y ∈ P

as required. �

The d-lattice D has associated morphisms

D
UD- Ospec(D) ID

UID- Opt(ID)

(in the appropriate category) to a pair of topologies on the same set spec(D) = pt(ID).
These are given by

P ∈ UD(a) ⇐⇒ a /∈ P P ∈ UID(I) ⇐⇒ I * P

for a ∈ D, I ∈ ID, and P a prime ideal of D. The morphism UID is surjective, but UD

need not be.
From earlier we know that the left hand morphism can be factorized as

D
η - ID UD- Ospec(D)

where this UD is an isomorphism. By comparing the definition of this UD with that of
UID we see that the two assignments are exactly the same. Thus we have the following.

5.11 THEOREM. For each d-lattice D the spectrum spec(D) is nothing more than the
point space pt(ID) of the frame of ideals of D. Furthermore, the composite

D
η - ID

UID- Opt(ID)

is the representation of D.
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To conclude this section we can give a bit more information to explain the reflection
of block 5.3.3 of [3]. The crucial result there is the existence of a unique frame morphism

ΦA
ιA - IA

for each frame A. In fact, such a morphism exists for any d-lattice, not just a frame. (The
frame properties are needed to produce a frame morphism

IA
ζA - A

which is composed with ιA.)
For any d-lattice D we take

T = Set [D,2] S = Dlt [D,2]

the set of characteristic functions on D and the set of frame characters on D. Using
the sierpinski topology on 2 we furnish T with the product topology and then take the
subspace topology on S. In particular, restriction

OT - OS
U - U ∩ S

is a surjective frame morphism.
Next we observe there is a bijective correspondence

Dlt [D,2] ∼= spec(D)

p < > P

given by
p(x) = 0 ⇐⇒ x ∈ P

for x ∈ A. We check that this is a homeomorphism relative to the two carried topologies
(the restricted product topology and the spectral topology).

All this produces a morphism

ΦD = Set [D,2] - ODlt [D,2] ∼= Ospec(D) ∼= ID

passing through two isomorphisms. Tracking through these we find that this is the mor-
phism ι extended to the lattice case. Essentially, this is what is being proved towards the
end of Block 5.5.3 of [3].

6 Frames with no points

In Section 1 we indicated that there are frame with no points. In particular we observed
that an atomless complete boolean algebra is a frame with no points (since the points
of a boolean frame are just its maximal elements, the complements of its atoms). The
main aim of this section is to show there is at least one quite exotic frame with no points.
However, before we do that let’s fill in a gap. Let’s see where we can find atomless
complete boolean algebras.

To do that we remember where we can find complete boolean algebras.
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Consider any space S with is topology OS. By Example 4.10 of [3] we know that the
quotient frame (OS)¬¬ is a complete boolean algebra and is just the algebra of regular
open sets of S. We will show that for a suitable space S this algebra has no points.

We use a simple observation.
Consider an arbitrary quotient

A
j∗ - Aj

of a frame A as determined by a nucleus j on A. What are the points of this quotient?
By viewing a point as a frame character we see that each point of the quotient

A
j∗ - Aj

- 2

produces a point of the parent, by composition. What is this in terms of ∧-irreducible
elements? I will leave the proof of the following as an exercise.

6.1 LEMMA. For each frame quotient

A
j∗ - Aj

as ∧-irreducible elements, the points of Aj is are precisely those points p of A that are
fixed by j, that is j(p) = p.

With this we can generate lots of atomless complete boolean algebras.

6.2 EXAMPLE. Let S be a space and assume that S is both T1 and sober. In particular,
any T2 space will do. Consider the canonical quotient

OS - (OS)¬¬

to the complete boolean algebra of regular open sets of S.
Consider any point of (OS)¬¬. By Lemma 6.1 this must also be a point of OS. Since

S is sober it must have the form s−′ for some s ∈ S. Since S is T1, this must have the
form {s}′ for some s ∈ S.

This is certainly a point of OS. To be a point of (OS)¬¬ it must satisfy

¬¬({s}′) = {s}′

that is
{s}′−◦ = {s}′

which gives
{s}◦− = {s}

by taking the complement of both sides.
Suppose we have such a point s, and let U = {s}◦. Then U 6= ∅, for otherwise

{s} = U− = ∅, which is not so. Consider any t ∈ U . Then t ∈ U− = {s}, to show that
t = s. Thus we have U = {s}, and hence

S ∩ U = {s}

to show that s is an isolated point of the whole space.
This shows that any T1+sober space with no isolated points provides an example of

an atomless complete boolean algebra, and hence a frame with no points. �
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This is all very nice but what if every frame without points is boolean.
As I said, the main purpose of this section is to exhibit an exotic frame with no points.

We construct a frame Ω with the following properties.

• Ω has no points, that is pt(Ω) = ∅.

• Ω has many regular elements, that is elements a with ¬¬a = a.

• Ω has many dense elements, that is elements a with ¬a = ⊥.

As we have seen, it is easy to produce a frame with the first two properties, for we simply
take a complete, atomless boolean algebra. The third property is not so straight forward.
The frame we produce is also complicated in other ways, but these are not easy to describe
in a succinct fashion.

To construct this exotic frame Ω we start from a certain poset S and take an appro-
priate quotient of the frame ΥS of upper sections of S. In other words, Ω is the family
of certain upper sections of S; it is a fixed set of ΥS.

Recall that for such a quotient Ω the implication on Ω agrees with that on ΥS.
Furthermore, we have

s ∈ (V ⊃ U) ⇐⇒ ↑s ∩ V ⊆ U

for each U, V ∈ ΥS and s ∈ S. We arrange that ∅ ∈ Ω, so that negation

¬(·) = (·) ⊃ ∅

on Ω agrees with that on ΥS. This helps us get at the regular and dense elements of Ω.
Each point, ∩-irreducible element, of Ω arises from a point of ΥS. We arrange that

the quotient

ΥS - Ω

kills all the points of ΥS, that is no point survives the passage to Ω.
We use a particular poset S which has certain extra structure and extra properties

which are important for the construction. This means there are two possible ways to
proceed.

We could take a concrete approach. We say at the outset what the particular poset S
is, and then work with this throughout. In this approach the distinction between relevant
and the irrelevant properties of S may not be clear.

We could take an abstract approach. We postulate a poset with certain properties,
use these to produce Ω, and then give an examples of such a poset. With this approach
the distinction between the general and the particular is clearer.

Here I will take the abstract approach. However, once I have set up the basic data I
will tell you what the particular example is, so you may keep this in mind as the abstract
development unfolds. Of course, later we will look again in more detail at the particular
example.

Let S be a poset. We let r, s, t range over S. We write

r|s

to indicate that r, s are incompatible in S, that is there is no t with r, s ≤ t.
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(C1) s � t =⇒ (∃r)[t ≤ r and r|s]
(C2) s ∈ S, σ ∈ Σ− S =⇒ (∃r)[s ≤ r and r|σ]

(C3) (∀σ ∈ Σ)(∃s ∈ S)[s ≤ σ]

(C4) r, s ≤ σ =⇒ (∃t)[r, s ≤ t ≤ σ]

(C5) If R ⊆ S is directed in S then
∨
R exists in Σ.

(C6) If the lower section R ⊆ S is directed in S and if s ≤
∨
R, then s ∈ R.

Table 1: Conditions on the pair S ⊆ Σ

We assume S sits inside a larger poset Σ. We let ρ, σ, τ range over Σ. This fount
convention will help us to distinguish between S and Σ.

We assume the comparison on S is just the restriction of the comparison on Σ. Thus
we write ≤ for both comparisons. It turns out that

(·|·) r|s (in S) =⇒ r|s (in Σ)

also holds. In fact, in the particular example, for elements r, s ≤ σ the join r ∨ s exists in
S, but this partial join operation on S is not important in the construction.

We need certain restriction on S and Σ. These are listed in Table 1, but before we
look at those let me tell you what the particular example is.

Let A and B be infinite sets with |A| < |B|. Let Σ be the set of all partial functions
from A to B, ordered by extension. Let S be the set of all finite partial functions from A
to B. We will return to this example after the general development.

On an historical point, I have no idea where the example originally came from. I found
it in some of my very old handwritten notes. The poset S is clearly a family of forcing
conditions, as used in Set Theory. However, I know very little about that subject, so it’s
a bit of a mystery how I got hold of the example. Perhaps some of you out there recognize
it from elsewhere.

Consider a pair of posets, S ⊆ Σ, as above. We assume the conditions (C1 – C6) of
Table 1. Observe that (C4) give the condition (·|·) above. We use these conditions to
verify certain properties of ΥS.

6.3 LEMMA. Condition (C1) ensures that for each s ∈ S the principal upper section ↑s
of S is regular in ΥS.

Proof. We require
¬¬(↑s) ⊆ ↑s

for the given s ∈ S. Observe that

r ∈ ¬(↑s) ⇐⇒ ↑r ∩ ↑s = ∅ ⇐⇒ r|s

for each r ∈ S. Consider any t ∈ ¬¬(↑s). Thus

↑t ∩ ¬(↑s) = ∅
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and we require s ≤ t.
If s � t then (C1) gives

t ≤ r r|s
for some r ∈ S. But then

r ∈ ↑t ∩ ¬(↑s)
which is impossible. �

When we construct the quotient Ω of ΥS (with ∅ ∈ Ω) we ensure that ↑s ∈ Ω for each
s ∈ S. This will gives many regular elements of Ω.

We also want many dense elements. Consider σ ∈ Σ. We use

r ∈ D(σ) ⇐⇒ r|σ

(for r ∈ S) to extract an upper section of S.

6.4 LEMMA. Condition (C2) ensures that for each σ ∈ Σ− S the upper section D(σ) of
S is dense in ΥS.

Proof. Let D = D(σ). We require ¬D = ∅.
Consider any s ∈ S. Condition (C2) provides some r ∈ S with

s ≤ r r|σ

that is with
r ∈ ↑s ∩D

so that
↑s ∩D = ∅

and hence s /∈ ¬D, as required. �

When we construct the quotient Ω of ΥS (with ∅ ∈ Ω) we ensure that D(σ) ∈ Ω for
many (but not all) σ ∈ Σ− S. This gives us many dense elements of Ω.

We want to kill the points of ΥS. To do that we need to know what these points look
like. Consider σ ∈ Σ. We use

r ∈ P (σ) ⇐⇒ r � σ

(for r ∈ S) to extract an upper section of S.

6.5 LEMMA. Conditions (C3) and (C4) ensure that for each σ ∈ Σ the upper section
P (σ) of S is ∩-irreducible in ΥS.

Proof. Let P = P (σ). By (C3) there is some s /∈ P , so that P 6= S.
Consider U, V ∈ ΥS with

U * P V * P

so we require U ∩ V * P . We have some

r ∈ U r ≤ σ s ∈ V s ≤ σ
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and then (C4) gives some
r, s ≤ t ≤ σ

so that
t ∈ U ∩ V t /∈ P

as required. �

This result gives us many points of ΥS. We need to know that every point arises in
this way.

6.6 LEMMA. Suppose P ∈ ΥS is ∩-irreducible. Conditions (C5) and (C6) ensure that
P = P (σ) for some σ ∈ Σ.

Proof. For the given P let R = S − P to obtain a lower section of S. For r, s ∈ S we
have

r, s ∈ R =⇒ ↑r, ↑s * P =⇒ ↑r ∩ ↑s * P =⇒ (∃t ∈ R)[r, s ≤ t]

to show that R is directed. By condition (C5) we have an element

σ =
∨

R

of Σ. We show that P = P (σ).
Since

r /∈ P =⇒ r ∈ R =⇒ r ≤ σ =⇒ r /∈ P (σ)

we have P (σ) ⊆ P .
Conversely, if s /∈ P (σ), that is

s ≤ σ =
∨

R

then condition (C6) gives s ∈ R, that is s /∈ P . Thus P ⊆ P (σ). �

Our next job is to produce a suitable quotient of of ΥS. To do that we first describe
a general method of producing quotients of ΥS for an arbitrary poset S. For this method
the conditions of Table 1 play no role and we do not need a larger poset Σ. Once we have
this general method we look at the particular example indicated earlier.

Thus, for the time being let S be an arbitrary poset.
Recall that an interval of S is a subset H ⊆ S with

r ≤ s ≤ t

r, t ∈ H

}
=⇒ s ∈ H

for all r, s, t ∈ S. Sometimes an interval is called a convex part. Note that each upper
section and each lower section of S is an interval. Note also that the intersection of a
family of intervals is itself an interval.

To obtain a quotient of ΥS we use a family of intervals with a suitable property. Since
such a family does not occur elsewhere in these notes we need not give it a memorable
name.
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6.7 DEFINITION. A family H of intervals of a poset S is suitable if

↑s ∈ H
H ∈ H
H ⊆ K

}
=⇒ K ∈ H

for each s ∈ S and all interval H,K. �

Trivially, the family of all intervals of S is suitable. Eventually we use a much smaller
suitable family and apply the following construction.

6.8 DEFINITION. Let H be a suitable family of intervals of the poset S. The induced
family Ω(H) ⊆ ΥS is given by

U ∈ Ω(H) ⇐⇒ (∀s ∈ S)[s /∈ U =⇒ ↑s− U ∈ H]

(for U ∈ ΥS). �

The following result is, perhaps, a surprise.

6.9 LEMMA. Let H be a suitable family of intervals of the poset S. The induced family
Ω(H) is a fixed set of ΥS, and ∅ ∈ Ω(H).

Proof. Let Ω = Ω(H). We must show the following.

(i) ∅ ∈ Ω

(ii) Ω is closed under arbitrary intersections.

(iii) if U ∈ Ω and V ∈ ΥS, then (V ⊃ U) ∈ Ω.

We deal with each of these in turn.

(i) For each s ∈ S we have
↑s− ∅ = ↑s ∈ H

by the first part of suitability.

(ii) Consider any U ⊆ Ω, and let V =
⋂
U . To show V ∈ Ω consider any s /∈ V , and

let
K = ↑s− V

so that K ∈ H is required. We produce some H ∈ H with H ⊆ K, and then invoke the
second part of suitability.

Since s /∈ V we have some U ∈ U ⊆ Ω with s /∈ U . Since U ∈ Ω we have

H = ↑s− U ∈ H

and hence an inclusion H ⊆ K will suffice. Since V ⊆ U we have U ′ ⊆ V ′, and hence
H ⊆ K.

(iii) Consider any
U ∈ Ω V ∈ ΥS

and let
W = (V ⊃ U)
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so that we require W ∈ Ω. Remember that

r ∈ W ⇐⇒ ↑r ∩ V ⊆ U

(for r ∈ S).
To show W ∈ Ω consider any s /∈W , and let

K = ↑s−W

so that K ∈ H is required. We produce some H ∈ H with H ⊆ K, and then invoke the
second part of suitability.

Since s /∈W we have
↑s ∩ V * U

to produce some s ≤ t ∈ V with t /∈ U . Since U ∈ Ω we have

H = ↑t− U ∈ H

and hence an inclusion H ⊆ K will suffice.
Consider any r ∈ H . We have

s ≤ t ≤ r r /∈ U

so that r ∈ V (since t ∈ V ) and
↑r ∩ V * U

(as witnessed by r). This non-inclusion gives r /∈W , and hence r ∈ K. �

Since the family Ω(H) is a fixed set of ΥS, it is determined by some nucleus on ΥS.
I do not know a simple description of this nucleus.

This conclude the abstract generalities. We can now begin the particular concrete
construction.

We need a pair of poset S ⊆ Σ satisfying the conditions of Table 1. Recall what these
ensure.

(C1) Each ↑s is regular in ΥS (for s ∈ S).

(C2) Each D(σ) is dense in ΥS (for σ ∈ Σ− S).

(C3,4) Each P (σ) is a point of ΥS (for σ ∈ Σ).

(C5,6) Each point of ΥS has the form P (σ) (for some σ ∈ Σ).

We use the construction of Definition 6.8 to produce a quotient Ω of ΥS. We ensure the
following.

(D1) Each ↑s ∈ Ω (for s ∈ S).

(D2) Each D(σ) ∈ Ω (for many σ ∈ Σ− S).

(D3) The quotient kills each P (σ) (for σ ∈ Σ).
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We choose the posets S ⊆ Σ and the family H with these in mind.
Let A and B be a pair of infinite sets with |A| < |B|, that is the cardinality of B is

strictly greater than the cardinality of A. A partial function from A to B is a function

σ : X - B

for some subset X ⊆ A. We write ∂σ for the domain of definition of σ. Thus

σ : ∂σ - B

and we have a value σ(a) for each a ∈ ∂σ. These partial functions are partially ordered
by extension, thus

σ ≤ τ ⇐⇒ ∂σ ⊆ ∂τ and σ = τ |∂σ

for such functions σ, τ .
Let Σ be the poset of all these partial functions.
Observe also that

σ|τ ⇐⇒ (∃a ∈ ∂σ ∩ ∂τ)[σ(a) 6= τ(a)]

for σ, τ ∈ Σ. In fact, if σ and τ are compatible, (not σ|τ), then there is a smallest common
extension σ ∪ τ of the two.

Notice that since |A| < |B|, no σ ∈ Σ has range B. It is this fact that will enable us
to kill all the points of ΥS.

Let S be the subposet of Σ of all finite partial functions from A to B. Since A is
infinite we see that S is strictly smaller than Σ.

As above we let ρ, σ, τ range over Σ, and let r, s, t range over S.
We must check the conditions (C1 – C6) for this pair.

(C1) Consider s, t ∈ S with s � t. There is some a ∈ ∂s with either a /∈ ∂t or a ∈ ∂t and
s(a) 6= t(a). For the second alternative we have t|s, so we may take r = t. For the
first alternative we extend t to

r = t ∪ [a 7→ b]

for any b ∈ B with b 6= s(a).

(C2) Consider s ∈ S and σ ∈ Σ− S. The set

∂σ − ∂s

is non-empty (since ∂σ is infinite but ∂s is finite). Consider any a ∈ ∂σ − ∂s and
extend s to

r = s ∪ [a 7→ b]

where b 6= σ(a).

(C3) Consider any σ ∈ Σ. For any finite X ⊆ ∂σ let s = σ|X . Then s ∈ S and s ≤ σ.
(Actually, the empty partial function is in S and is the bottom of σ.)

(C4) Consider r, s ∈ S and σ ∈ Σ with r, s ≤ σ. The two functions r, s are compatible,
so we may take t = r ∪ s.
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(C5) Suppose R ⊆ S is directed in S. For each r1, . . . , rm ∈ R there is some s ∈ R with
r1, . . . , rm ≤ s. Consider the subset

X =
⋃
{∂r | r ∈ R}

of A. For each a ∈ X there may be several r ∈ R with a ∈ ∂r. However, the value
r(a) is independent of the choice of r. Thus we may define a function

σ : X - B

by
σ(a) = r(a) for any r ∈ R

to obtain the smallest common extension of the r ∈ R. This is the required
∨
R.

(C6) Suppose R is a directed lower section of S, and let σ =
∨
R. Consider any s ∈ S

with s ≤ σ. The set ∂s is finite. For each a ∈ ∂s there is some r ∈ R with a ∈ ∂r,
and s(a) = r(a). This gives finitely many r1, . . . , rm ∈ R with

∂s ⊆ ∂r1 ∪ · · · ∪ ∂rm

and for each a ∈ ∂s there is some ri with s(a) = ri(a). But R is directed, so there
is some r ∈ R with r1, . . . , rm ≤ r. This gives some s ≤ r, and hence s ∈ R.

To conclude the construction we need a suitable family of intervals of S. This, of
course, must ensure that (D1, D2, D3) hold.

6.10 DEFINITION. An interval H of S is collectively surjective if for each b ∈ B there is
some s ∈ H and a ∈ ∂s with s(a) = b.

Let H be the family of collectively surjective interval. �

Each σ ∈ Σ is not surjective. Thus the set

S − P (σ) = {s ∈ S | s ≤ σ}

is not collectively surjective. This indicates that a collectively surjective interval has to
be comparatively large.

6.11 LEMMA. The family H of collectively surjective intervals is suitable.

Proof. Consider any s ∈ S and b ∈ B. The set A is infinite and ∂s is finite, so there
is some a ∈ A− ∂s. The extension

t = s ∪ [a 7→ b]

ensures that ↑s ∈ H.
The second requirement is trivial. �

This result with Lemma 6.9 gives us a quotient Ω = Ω(H) of ΥS with ∅ ∈ Ω. It
remains to verify (D1, D2, D3) for this frame Ω.
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6.12 LEMMA. For each s ∈ S we have ↑s ∈ Ω.

Proof. Consider t /∈ ↑s, that is with s � t. We require ↑t − ↑s ∈ H. Consider any
b ∈ B. We produce an extension

r = t ∪ [a 7→ b]

of t with s � r. Of course, we have to take a little care with out choice of a ∈ A.
Since s � t there is some c ∈ A where one of the two conditions

c ∈ ∂s c /∈ ∂t c ∈ ∂s ∩ ∂t s(c) 6= t(c)

holds. We consider any element a ∈ A with

a /∈ ∂t ∪ {c}

which we can do since ∂t ∪ {c} is finite and A is infinite.
Since a /∈ ∂t, the function r exists. Thus it suffices to show s � r.
By way of contradiction suppose s ≤ r. There are two cases corresponding to the left

and the right conditions on c given above.
For the left hand case we have

c ∈ ∂s ⊆ ∂r = ∂t ∪ {a}

so that c = a. But we have chosen a 6= c.
For the right hand case we have

s(c) = r(c) = t(c)

which contradicts the choice of c. �

This result with Lemma 6.3 gives us many regular elements of Ω. In a similar way we
use Lemma 6.4 to produce many dense elements of Ω.

6.13 LEMMA. Consider any σ ∈ Σ− S where A− ∂σ is infinite. Then D(σ) ∈ Ω.

Proof. Consider any s /∈ D(σ), that is with σ and s compatible, so that

τ = σ ∪ s

exists in Σ. We require ↑s−D(σ) ∈ H.
Consider any b ∈ B. We produce an extension

σ ≤ τ ≤ τ ∪ [a 7→ b]

and then take
t = s ∪ [a 7→ b] ≤ τ ∪ [a 7→ b]

to get t ∈ ↑s−D(σ).
We have

∂τ = ∂σ ∪ ∂s
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with A− ∂σ infinite and ∂s finite. Thus

A− ∂τ 6= ∅

and we may take any a ∈ A− ∂τ . �

There are many σ ∈ Σ−S with A−∂σ infinite. Thus, by Lemma 6.4, there are many
dense elements of Ω.

At last we have got to the point of the whole construction.

6.14 THEOREM. The frame Ω has no points.

Proof. Consider any point P of ΥS. We want P /∈ Ω. For this is suffices to exhibit

s /∈ P ↑s− P /∈ H

for some s ∈ S.
By Lemma 6.6 we have P = P (σ) for some σ ∈ Σ. Consider any s ∈ S with s ≤ σ.

We have s /∈ P .
By way of contradiction suppose ↑s− P ∈ H. We have

t ∈ ↑s− P ⇐⇒ s ≤ t ≤ σ

(for t ∈ S), so that σ is surjective (since the family of all such t is collectively surjective).
But |∂σ| ≤ |A| < |B|, and hence σ is not surjective. �

You might think that a frame without points can be constructed starting with any
frame. Let us say a nucleus j on a frame A kills all the points if j(p) = > for each point p.
For such a nucleus j the quotient Aj has no points. For instance, at the beginning of this
section we saw that for a T1+sober space S with no isolated points the double negation
nucleus kills all the points.

If the nucleus j kills all the points of its parent frame A, then Aj has no points, but
it may not be a very interesting frame. To get round that we can try to make j as small
as possible. Thus let k be the infimum of all the nuclei which kill all the points, and
look at Ak. Unfortunately it can happen that Ak has some points. There is something to
investigate here and a story to be told. But not just now.

7 Frames with enough points

Each frame A has a point space S = pt(A) together with a canonical surjective morphism

A
UA - OS

which indexes the topology on S. By Theorem 3.1 this morphism is the spatial reflection
of A, that is pt(A) is the universal way of converting A into a space.

We have seen, in Section 6, that some frame have no points. There are some quite
large and complicated frames with no points. In other words, in general, the morphism
UA can be a long way from being injective.
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7.1 DEFINITION. A frame A is spatial if its associated morphism UA is injective. �

As usual, we view the points of a frame A as its ∧-irreducible elements. This gives us
a useful characterization of spatiality.

7.2 LEMMA. A frame A with S = pt(A) is spatial precisely when

a � b =⇒ (∃s ∈ S)[a � s and b ≤ s]

for each a, b ∈ A.

Proof. The frame A is spatial precisely when UA is injective, that is

UA(a) ⊆ UA(b) =⇒ a ≤ b

for a, b ∈ A. The left hand side of this implication unravels as

(∀s ∈ S)[a � s =⇒ b � s]

so the required implication is the contrapositive of the given one. �

Some frames are ‘obviously’ spatial. For instance, let S be any space and consider its
topology OS. This frame is ‘obviously’ spatial. The slight catch is the the points of OS
are not the points of S. We have a continuous map

S - pt(OS)
s - s−

′

but this may be neither injective nor surjective.
Observe that for s ∈ S and U ∈ OS we have

s /∈ U ⇐⇒ s ∈ U ′ ⇐⇒ s− ⊆ U ′ ⇐⇒ U ⊆ s−
′

and this gives the following.

7.3 LEMMA. For each space S the topology OS is spatial.

Proof. We use Lemma 7.2. Consider any U, V ∈ OS with U * V . There is some
s ∈ U − V . But now, by the observation above, we have

U * s−
′

V ⊆ s−
′

and s−
′
is a point of OS. �

A space S provides some, but perhaps not all, of the points of OS. However, it does
provide enough points to ensure that OS is spatial, and S doesn’t need to be sober to do
this. There’s a thought.

Informally, we sometimes say that a frame A has enough points if it is spatial. Some-
times a frame does have enough points but, at first sight, it is not all clear where the
points come from. Let’s look at a simple example of this.

7.4 LEMMA. Each finite frame is spatial.
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Proof. Let A be a finite frame and consider a pair of elements a, b with a � b. We
must separate these by a ∧-irreducible element.

Consider Z ⊆ A given by

z ∈ Z ⇐⇒ a � z and b ≤ z

(for z ∈ A). We know Z 6= ∅, since b ∈ Z. It suffices to show that Z contains a
∧-irreducible element.

The set Z is finite (since A is finite). Thus Z has a maximal member. By that we
mean a member that is maximal in Z, not necessarily maximal in A. Let m be such a
maximal member. We show that m is ∧-irreducible.

Since a � m we have m 6= >.
Consider x, y ∈ A with x � m and y � m. We require x ∧ y � m.
Since

x � m y � m

we have
m < m ∨ x m < m ∨ y

and hence
m ∨ x /∈ Z m ∨ y /∈ Z

by the maximality of m. Since

b ≤ m ≤ m ∨ x b ≤ m ≤ m ∨ y

this gives
a ≤ m ∨ x a ≤ m ∨ y

and hence
a ≤ (m ∨ x) ∧ (m ∨ y) = m ∨ (x ∧ y)

(since A is distributive). Thus, if x ∧ y ≤ m then a ≤ m, which is not so. �

You may think I have made heavy weather of this proof, and perhaps I have, but I
have done it for a purpose. The proof is a template for many proof of spatiality. First we
maximize something or other, and then we show that this maximal thingy has a prime-like
property. This gives us the separating point that we want.

The crucial problem is that often the maximizing step is not just a use of finite
cardinalities. It often needs a choice principal, and often this is a variant of Zorn’s
Lemma.

7.5 ZORN’S LEMMA. Let S be a poset in which each directed subset has an upper bound.
Then each element of S lies below a maximal element.

Usually ZL is stated using upper bounds of chains. However, more often than not this
‘directed’ version is easier to use. Note that the upper bound need not be a supremum,
although it often is in practice.

For the next example of spatiality we return to the Stone representation theorem of
Section 5.

Let D be a d-lattice, let ID be its frame of ideals, and let spec(D) be its space of
prime ideals. By Lemma 5.10 we know that spec(D) is precisely the set pt(ID) of points
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of ID. Furthermore, we observed that the two carried topologies are precisely the same.
Thus, as in Theorem 5.11, we have a commuting triangle

ID

D

η -

Ospec(D)

UD

?δ
-

where δ is the traditional, point-sensitive, representation of D, and η is the point-free
version. The right hand vertical arrow, UD, is just the spatial reflection of ID.

By Theorem 5.9 we know that UD is an isomorphism. In other words, this result shows
that ID is spatial. That proof makes use of the Separation Property 5.5. It is instructive
to look at a slightly different proof which makes use of ZL.

To help with a couple of applications we need the following notion.

7.6 DEFINITION. An element d of a frame A is compact if

d ≤
∨
X =⇒ d ∈ X

for each directed lower section X of A. �

For instance, if you think about it, an open set U of a space is compact in OS precisely
when it is compact in the usual topological sense.

7.7 LEMMA. Let A be a frame, let d ∈ A, and let Z(d) be the poset of all ideals Z of A
with d /∈ Z.

(a) The poset Z(d) is closed under unions of directed subfamilies.
(b) Each maximal member of Z(d) is a prime ideal.
(c) If d is compact then each maximal member of Z(d) is principal.

Proof. (a) It suffices to observe that the union of a directed family of ideals is itself
an ideal.

(b) Consider a maximal member M of Z(d). Since d /∈ M , we see that M is proper.
To show that M is prime consider x, y ∈ A with x /∈M and y /∈M . We require x∧y /∈M .

Since
x /∈M y /∈M

we have
M ( M ∨ ↓x M ( M ∨ ↓y

using the ideals generated by M ∪ {x} and M ∪ {y}, respectively. By the maximality of
M we have

d ∈M ∨ ↓x d ∈ M ∨ ↓y
and hence

d ≤ m1 ∨ x d ≤ m2 ∨ y
for some m1, m2 ∈M . Let

m = m1 ∨m2 ∈M
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so that
d ≤ m ∨ x d ≤ m ∨ y

and hence
d ≤ (m ∨ x) ∧ (m ∨ y) = m ∨ (x ∧ y)

(since D is distributive). Thus, if x ∧ y ∈M then d ∈ M , which is not so.

(c) Let M be a maximal member of Z(d). This ideal MV is directed in A, and so
p =

∨
M exists in A. We have M ⊆ ↓p, so It sufficed to show p ∈ M .

By way of contradiction, suppose p ∈ M . Thus M ( ↓p and hence d ∈ ↓p by the
maximality of M . Thus

d ≤
∨
M

and hence d ∈ M (since d is compact and M is a directed lower section). This is the
contradiction. �

Part (a) of this result shows that we may apply ZL to Z(d). Thus each member of
Z(d) lies below a maximal member which, by part (b), is a prime ideal of A. Part (c)
shows that under certain circumstances that prime ideal has the form ↓p for some p ∈ A.
That element p is ∧-irreducible, and so is a point of A.

As a first example let’s see how this idea generalizes that of the proof of Theorem 5.9.

7.8 EXAMPLE. In this example you need to keep control of yourself, for we look at ideals
on two different levels.

Let D be a d-lattice, and let A = ID be its frame of ideals. We also need to look at
the poset of ideals of A.

Consider any a ∈ D and any I ∈ A with a /∈ I. We produce a prime ideal P of D
with a /∈ P and I ⊆ P . Of course, this prime ideal of D is ∩-irreducible in A, so we are
looking for a point of A.

Observe that ↓a is a compact member of A. We look at Z(↓a), which is a family of
ideals of (not in) A.

Let
⇓I = {J ∈ A | J ⊆ I}

the set of ideals J of D with J ⊆ I. This is a principal ideal of A. Also

↓a ∈ ⇓I ⇐⇒ ↓a ⊆ I ⇐⇒ a ∈ I

so that ⇓I ∈ Z(↓a).
By ZL there is some maximal member M of Z(↓a) with ⇓I ⊆ M . By Lemma 7.7

this M is a principal prime ideal of A, and so it has the form ⇓P for some ∩-irreducible
member P of A. This is a prime ideal of D. We have both

↓a /∈ ⇓P ⇓I ⊆ ⇓P

which unravel to
a /∈ P I ⊆ P

for the required result. �
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This example is a bit hairy because of the two levels of ideals involved, and in truth it
is not the neatest proof of the spatiality of ID. But it does illustrate how frame theoretic
ideas can set certain results in a wider context.

The next application of Lemma 7.7 deals entirely with frames.

7.9 DEFINITION. A frame A is conjunctive if for all a, b ∈ A with a � b we have

a ∨ z = > b ∨ z 6= >

for some z ∈ A. �

This notion is the dual of the disjunctive property of distributive lattices, hence the
name. It is a weakening of the fitness property for frames, and so it often called subfitness.
Both of these properties are concerned with the block structure of the assembly NA.
Some information about this can be found in [2]. In topological terms it is a rather weak
separation property, weaker than T1.

The following result was fist proved in [1].

7.10 THEOREM. Let A be a conjunctive frame where the top > is compact. Then A is
spatial.

Proof. Consider element a � b of A. We must produce a point p of A with a 6= p and
b ≤ p.

Since A is conjunctive we have

a ∨ z = > b ∨ z 6= >

for some z ∈ A. Let d = > and, as in Lemma 7.7, let Z(>) be the family of ideals Z with
> /∈ Z (that is the family of proper ideals). We have ↓(b ∨ z) ∈ Z(>).

By Lemma 7.7(a) and ZL there is a maximal member M of Z(>) with b ∨ z ∈ M .
Since > is compact, Lemma 7.7 ensures that M = ↓p for some point p of A. We have

b ≤ b ∨ z ≤ p

so that a 6= p, for otherwise > = a ∨ z ≤ p, which is not so. �

For the second application of Lemma 7.7 we again look at a restricted class of frames.
A frame is compactly generated if for all a, b ∈ A with a � b, there is some compact

d ∈ A with d ≤ a and d � b. In other words, each element of A is the supremum of the
compact elements below it.

7.11 THEOREM. Each compactly generated frame A is spatial.

Proof. Consider elements a � b of A. We must produce a point p of A with a � p and
b ≤ p.

Since a is compactly generated there is a compact element d ∈ A with d ≤ a and d � b.
As in Lemma 7.7, let Z(d) be the family of ideals Z with d /∈ Z. We have ↓(b ∈ Z(>).

By Lemma 7.7(a) and ZL there is a maximal member M of Z(d) with b ∨ z ∈ M .
Since d is compact, Lemma 7.7 ensures that M = ↓p for some point p of A. Thus b ≤ p.
If a ≤ p, then

d ≤ a ≤ p ∈ M
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which is not so. �

So far in this section we have approached the points of a frame via its prime ideals.
But a point also corresponds to a completely prime filter, and this gives us a second way
of producing points.

In the following we repeat the definition of completely prime to emphasize the com-
parison.

7.12 DEFINITION. A filter F on a frame A is, respectively,

open completely prime

if ∨
X ∈ F =⇒ X meets F

for all
all directed all

subsets X ⊆ A. �

Often an open filter is said to be ‘Scott-open’. This is because each such filter F on A
is open in the Scott topology on A. With a little more effort a better terminology could
have been devised, but unfortunately the above terminology has stuck.

The following is the filter analogue of Lemma 7.7.

7.13 LEMMA. For an element d of a frame A let F(d) be the poset of all open filter F of
A with d /∈ F .

(a) The poset F(d) is closed under unions of directed subfamilies.
(b) Each maximal member of F(d) is a completely prime filter.

Proof. (a) Let G be a directed subfamily of F(d). The union
⋃
G is an ideal, so it

suffices to show that F is open. To this end let X ⊆ A be directed in A with
∨
X ∈ F .

We have
∨
X ∈ G for some G ∈ G. But G is open, so X meets G, and hence X meets⋃

F(d).
(b) Let M be a maximal member of F(d). We know that M is open, that is∨

X ∈ M =⇒ X meets M

for each directed X ⊆ A. We require this implication for all X ⊆ A.
Let X be an arbitrary subset of A. Let Y be the directed closure of X, the set of all

elements
x1 ∨ · · · ∨ xk

for x1, . . . , xk ∈ X. We have ∨
Y =

∨
X ∈M

and hence Y meets M (since M is open). Thus we have

x1 ∨ · · · ∨ xk ∈ M

for some for x1, . . . , xk ∈ X. We show that xi ∈M for some 1 ≤ i ≤ k.
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By way of contradiction, suppose xi /∈M for each 1 ≤ i ≤ m. Thus

M ( M ∨ ↑xi

and hence the maximality of M gives

d ≥ mi ∨ xi

for some mi ∈M . Let
m = m1 ∧ · · · ∧mk ∈M

so that
d ≥ (m1 ∨ x1) ∧ · · · ∧ (mk ∨ xk) = m ∧ (x1 ∨ · · · ∨ xk) ∈M

which is the contradiction. �

We use this result in conjunction with ZL. Of course, the result doesn’t tell us that
F(d) is non-empty, so in general there is still some work to be done.

7.14 DEFINITION. A frame A has enough open filters if for each a, b ∈ A with a � b there
is some open filter F with a ∈ F and b /∈ F .

There is a stronger property of having enough completely prime filters. This, of course,
is equivalent to being spatial, which shows us why the following result is useful.

7.15 THEOREM. A frame A is spatial precisely when it has enough open filters.

Proof. Suppose A is spatial. Consider a, b ∈ A with a � b. There is some point p of
a with a � p and b ≤ p. Let P be the corresponding completely prime filter, that is the
filter given by

z ∈ P ⇐⇒ x � p

(for z ∈ A). We have a ∈ P and b /∈ P , and P is open.
Conversely, suppose A has enough pen filter. Consider a, b ∈ A with a � b. Let F(b)

be the poset of open filter F with b /∈ F . Since A has enough open filter here is at least
one F ∈ F(b) with a ∈ F . By Lemma 7.13(a) and ZL there is a maximal member P of
F(b) with a ∈ P . By Lemma 7.13(b) this filter P is completely prime. This leads to the
required point separation of a and b. �

There are several other examples of the spatiality of a frame, but these are best done
in the appropriate context.
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A list of notations
UA – spatial reflection of A, 4, 17
Dpo – category of directedly complete

posets, 25
ID – frame of ideals of a d-lattice, 32
IS – family of ideals of poset S, 25
LS – family of lower sections of

poset S, 25
Pos – category of posets, 25
ΥS – Alexandroff topology on S

family of upper section of S, 28
pt(A) – set of points of A, 2
pt(A) – space of points of A, 4
\(U) – a typical open set of sob(S), 20
sob(S) – a version of the sober

reflection of S, 20
spec(D) – spectrum of a d-lattice, 32
∧-irreducible – used as a point, 2
h? – as distinct from h∗, 5

Alexandroff topology
on a poset, 28

character, 10
Frm -character, 12
Set -character, 10
Top-character, 11
frame-character, 12
space-character, 11

characteristic function, 10
closed irreducible subset

generic point of, 18
of a space, 18

d-lattice – see [3], 32
directed subset

of a poset, 24
directedly complete poset, 24

enough points, 50

filter
completely prime, 12
on a frame, 12
prime, 12

generic point

of a closed irreducible subset, 18

ideal
of a d-lattice, 32

prime, 32
of a poset, 25
principal, 26

ideal completion
of a poset, 27

lower section
of a poset, 25

point
of a frame, 2

point space
of a frame, 4

prime ideal
of a d-lattice, 32

principal ideal, 26

schizophrenically induced
contravariant adjunction, 10

Scott topology
on a directedly complete poset, 28

sierpinski space, 10
sober

reflection of a space, 19
space, 18

spatial
frame, 50

spatial reflection
of a frame, 4, 17

spectral space, 32
spectrum

of a d-lattice, 33
Stone representation, 32
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