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This is the first part of a series of notes [3, 4, 5, 6, 7] on frames, with several more to
come. In this part I set down the basic definitions and properties, give a few examples,
and begin the discussion of nuclei. The last section looks at various categorical properties,
and could be omitted at a first reading. 1 After that you should read [4] and [5] in the
order you prefer. That will give you a good grounding in the subject.

The whole collection can be found at [1] If you have never seen this collection before
then perhaps you should read [2].
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1 The category of frames

In this section we first set up the definition of a frame and a frame morphism, we then
look at two important classes of frames, and finally we sort out some useful gadgetry.

1It might make more sense to make Section 5 the bulk of another set of notes on reflections in general
for various kinds of structured posets.
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1.1 The basic notions

Is there a better way to start than with a definition?

1.1 DEFINITION. A frame is a structure

(A, ≤, ∧, >,
∨

, ⊥)

where

• (A,≤) is a complete poset

• (A,≤,∧,>) is a ∧-semilattice

• (A,≤,
∨

,⊥) is a
∨

-semilattice

and where these satisfy

(FDL) a ∧
∨

X =
∨
{a ∧ x | x ∈ X}

for each a ∈ A and X ⊆ A. This is the Frame Distributive Law.
A frame morphism

A
f - B

between frames A, B is a function f : A - B which preserves the distinguished at-
tributes.

Let
Frm

be the category of frames and frame morphisms. �

We must understand exactly what this definition says so it is worth looking at some
of its details.

A frame A is carried by a poset (A,≤) which is complete, that is both∧
X

∨
X

exist for each subset X ⊆ A. In particular, A has both extremes∧
∅ = > =

∨
A

∧
A = ⊥ =

∨
∅

the top and the bottom. Three of these, the two extremes and
∨

are selected as dis-
tinguished attributes. However,

∧
is not a distinguished attribute of the frame, but the

binary join ∧ is. This signature, the selected attributes, determines the notion of a frame
morphism. This is a function, as indicated, which preserves the comparison, in other
words it is monotone, and satisfies

f(>) = > f(⊥) = ⊥
f(x ∧ y) = f(x) ∧ f(y) f(

∨
X) =

∨
f→(X)
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for each x, y ∈ A and X ⊆ A (where A is the source of the morphism). In particular we
can have

f(
∧

X) 6=
∧

f→(X)

for X ⊆ A. We will see a general reason for this in Subsection 1.2.
For each function

f : A - B

we write
f→(X) = {f(x) | x ∈ X} f←(Y ) = {x ∈ A | f(x) ∈ Y }

for the
direct inverse

image of
X ⊆ A Y ⊆ B

across f , respectively.
As well as carrying these attributes a frame is required to satisfy FDL. As a particular

case of this we may take a couple X = {x, y} of elements to obtain

a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y)

and hence the frame is a distributive lattice. Consequently the frame also satisfies

a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y)

for a, x, y ∈ A. However, it can happen that

a ∨
∧

X 6=
∧
{a ∨ x | x ∈ x}

for a ∈ A and X ⊆ A. We will see an example of this in Subsection 1.2.
The import of the FDL can be expressed in a different way. We look at this in

Subsection 1.4.
As we have seen, each frame is both a ∧-semilattice and a

∨
-semilattice. More pre-

cisely, there is a pair

Frm - Meet Frm - Sup

of forgetful functors. We take a closer look at these in Section 5.
The precise definition of Meet is given in Subsection 5.2, and that of Sup slightly

earlier in Subsection 3.2.
It’s time to look at two substantial examples. We make each of these a subsection.

1.2 Topologies

Historically, topologies formed the motivating examples of frames. Before we look at them
let’s fix some notation which we used throughout these notes, and other sets in the series.

Let S be a topological space. Thus we have two families

OS CS
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of subsets of S, the
open closed

subsets of S, respectively. Here OS is the topology. We also have two operations

(·)◦ (·)−

on subsets of S, providing the

interior closure

of a subset of S, respectively. Any of these four gadgets uniquely determines the topology.
We also write

(·)′

for the set theoretic complementation on S. This, of course, is independent of the partic-
ular topology on S.

To be a topology the family OS must contain the two extremes S and ∅, and be closed
under binary intersections and arbitrary unions. This almost shows that

(OS, ⊆, ∩, S,
⋃

, ∅)

is a frame. All that is needed is the observation that FDL holds since OS sits inside the
power set PS and the relevant operations are computed set theoretically. This is a useful
way if motivating the distinguished attributes of a frame.

We know that for U ⊆ OS the intersection
⋂
U need not be open. The infimum of U

in OS is given by ∧
U = (

⋂
U)◦

using the interior operation of the space. Note also that for a topology OS we need not
have

W ∪
∧
U =

∧
{W ∪ U | u ∈ U}

for W ∈ OS and U ⊆ OS. Thus the opposite of FDL need not hold in a frame.
Consider a continuous map

T
φ - S

between a pair spaces S, T . By definition of continuity we have φ←(U) ∈ OT for each
U ∈ OS. A couple of simple calculations shows that the assignment

OS
φ← - OT

is a frame morphism. In particular, a frame morphisms need not preserve arbitrary infima.
This construction sets up a contravariant functor

Top
O - Frm

from spaces to frames. If you are new to this game you should go through the various
calculations missing here.

In [5] we show that O is one half of a contravariant adjunction between Frm and
Top . This connection enables many topological properties to be analysed using frame
theoretic methods. That is what point-free topology is about.
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1.3 Complete boolean algebras

In this subsection we isolate a ‘large’ subcategory of Frm .
A boolean algebra is a distributive lattice A for which each element is complemented.

That is, for each a ∈ A there is a , necessarily unique, element b ∈ A such that

a ∧ b = ⊥ a ∨ b = >

hold. We write ¬a for the element b, so that ¬(·) is a 1-placed operator on A. Notice that

¬¬a = a

(for if b is the complement of a, then a is the complement of b). Notice that any lattice
morphism

A
f - B

from a boolean algebra A preserves complements, that is if a, b are complementary of A,
then f(a), f(b) are complementary in B.

The operation ¬(·) on a boolean algebra A has various properties. In particular we
have

a ∧ x ≤ y ⇐⇒ x ≤ ¬a ∨ y

for a, x, y ∈ A. The proof of this is more important than the result. To prove ⇒ we
remember

¬a ∨ a = >
so that

x = (¬a ∨ a) ∧ x = (¬a ∧ x) ∨ (a ∧ x) ≤ ¬a ∨ y

using a ∧ x ≤ y at the final step. A similar argument starting from

¬a ∧ a = ⊥

gives the converse implication. This kind of trick is used several times in this subsection.
A complete boolean algebra is a boolean algebra which is complete as a poset. Such

an algebra has all the attributes to be a frame, but what about FDL?

1.2 LEMMA. Each complete boolean algebra is a frame.

Proof. Let A be a cba. Certainly A is a complete lattice, so it suffices to show that A
satisfies the FDL. To this end let

l = a ∧
∨

X r =
∨
{a ∧ x | x ∈ X}

for a ∈ A and x ⊆ A. The comparison r ≤ l is trivial, so it remains to verify the converse.
We use the equivalence given above.

For x ∈ X we have
a ∧ x ≤ l

so that
x ≤ ¬a ∨ l
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to give ∨
X ≤ ¬a ∨ l

and hence r ≤ l, as required. �

In any boolean algebra the interaction between meets, joins, and complementation is
given by the De Morgan laws. There are similar laws for complete boolean algebras. We
need one of these.

1.3 LEMMA. For an arbitrary subset X of a complete boolean algebra A we have∧
X = ¬(

∨
Y )

where
Y = {¬x | x ∈ X}

is the auxiliary subset.

Proof. Let
a =

∧
X b =

∨
Y

so that it suffices to show that a, b are complementary, that is

a ∧ b = ⊥ a ∨ b = >

hold.
For each y = ¬x ∈ Y we have

a ∧ y ≤ x ∧ ¬x = ⊥

and hence, since A is a frame,

a ∧ b =
∨
{a ∧ y | y ∈ Y } = ⊥

to give the left hand equality.
Let c = ¬b. For each x ∈ X we have

c∧ 6= x ≤ c ∧ b = ⊥

so that c ≤ x. Thus c ≤ a, and hence

a ∨ b ≥ c ∨ b = >

to give the right hand equality. �

Complete boolean algebras form the objects of two different categories, Cba and
CBA. Given two such algebras A, B and arrow

A
f - B
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in Cba is simply a lattice morphism, that is a function that preserves the finitary at-
tributes. As we saw above, such a morphism preserves complements. An arrow in CBA,
sometime called a complete morphism, preserves arbitrary infima and suprema, that is

f(
∧

X) =
∧

f→(X) f(
∨

X) =
∨

f→(X)

for each subset X of the source.
Each object of CBA is a special kind of frame, and each arrow of CBA is a special

kind of frame morphism. Thus we have a forgetful functor

CBA - Frm

this time with Frm as the target, not the source.
You might think that there is a third category where the objects are complete boolean

algebras, and the arrows are the frame morphisms between these algebras. However, the
next result shows that this is just CBA.

1.4 LEMMA. Let

A
f - B

be a frame morphism from a complete boolean algebra A to a frame B. Then f is a
complete morphism, that is

f(
∧

X) =
∧

f→(X)

for each X ⊆ A.

Proof. Let
b = f(

∧
X) d =

∧
f→(X)

for the given subset X. The monotonicity of f ensures that b ≤ d, so it suffices to show
the converse comparison.

Let
Y = {¬x | x ∈ X} c = f(

∨
Y )

so that
¬(

∨
Y ) =

∧
X

(by Lemma 1.3), and hence b and c are complementary in B.
For each y = ¬x ∈ Y we have

d ∧ f(y) ≤ f(x) ∧ f(¬x) = ⊥

since f passes across ∧. Also f passes across
∨

so that

c =
∨
{f(y) | y ∈ Y }

and hence
d ∧ c =

∨
{d ∧ f(y) | y ∈ Y } = ⊥

by the FDL in B. Finally, remembering that

c ∨ b = >
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we have
d = d ∧ (c ∨ b) = (d ∧ c) ∨ (d ∧ b) = d ∧ b ≤ b

as required. �

For each pair A, B of complete boolean algebras, we certainly have an inclusions

CBA[A, B] ⊆ Frm [A, B]

of arrow sets (since each complete morphism is a frame morphism). Lemma 1.4 shows
that, in fact, this inclusion is an equality. Thus we have the following.

1.5 THEOREM. The category CBA of complete boolean algebras and complete morphisms
is a full subcategory of the category Frm of frames.

In [7] we investigate just how CBA sits inside Frm .

1.4 The implication on a frame

A frame is a complete lattice which satisfies the FDL. This equational requirement can
be codified in a different way, and produces a useful tool.

1.6 DEFINITION. An implication on a ∧-semilattice A is a two placed operation (· ⊃ ·)
such that

x ≤ (b ⊃ a) ⇐⇒ b ∧ x ≤ a

for all a, b, x ∈ A.

Trivially, at most one implication can be carried by a ∧-semilattice. Carrying one
enforces certain properties.

1.7 LEMMA. A complete lattice A carries an implication precisely when it is a frame.

Proof. Suppose first that A is a frame. For a, b ∈ A set

(b ⊃ a) =
∨
{x ∈ A | b ∧ x ≤ a}

so that
b ∧ x ≤ a =⇒ x ≤ (b ⊃ a)

(for arbitrary x ∈ A). We require the converse. But

b ∧ (b ⊃ a) =
∨
{b ∧ x | b ∧ x ≤ a} ≤ a

by the FDL, and this leads to the required result.
Conversely, suppose A carries an implication, and consider any a ∈ A and X ⊆ A. It

suffices to show
a ∧

∨
X ≤

∨
{a ∧ x | x ∈ X}

(since the converse comparison is trivial). Let

y =
∨
{a ∧ x | x ∈ X}
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so that
a ∧ x ≤ y

for each x ∈ X. The implication property gives

x ≤ (a ⊃ y)

for each such x, so that ∨
X ≤ (a ⊃ y)

and hence
a ∧

∨
X ≤ y

by a second use of the implication property. �

This shows that a frame is exactly the same thing as a complete heyting algebra.
However, that description can be misleading since frame morphisms need not preserve
implication.

It is worth looking at two examples of implication.

1.8 EXAMPLES. (a) For a topology OS on a space S the implication is given by

(V ⊃ U) = (V ′ ∪ U)◦

for U, V ∈ OS. To see this consider an arbitrary W ∈ OS. Then

W ⊆ (V ′ ∪ U)◦ ⇐⇒ W ⊆ (V ′ ∪ U) ⇐⇒ W ∩ V ⊆ U

to give the required result.
We often use a topology OS to illustrate various aspects of frame theory. Sometimes

we use OS directly, but sometimes it is more enlightening to look at CS. This often
requires the insertion of a complementation at appropriate places. In this particular case,
for X, Y ∈ CS we have

(Y ′ ⊃ X ′)′ = (Y ∪X ′)◦′ = (X − Y )−

which is clearly important in some situations.
(b) For a complete boolean algebra A the implication is given by

(b ⊃ a) = ¬b ∨ a

using the negation on A. In other words we have

x ≤ ¬b ∨ a ⇐⇒ b ∧ x ≤ a

for a, b, x ∈ A. This is the observation made just before Lemma 1.2.
We will return to the idea of a negation shortly. �

There are many identities involving the implication. Some of these are given in the
next two results. It isn’t worth remembering most of these, but the proof technique –
repeated use of the characterizing equivalence – is important.
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1.9 LEMMA. On a frame A we have

(i) a ≤ (x ⊃ a)

(ii) x ∧ (x ⊃ a) = x ∧ a

(iii) x ≤ y =⇒ (y ⊃ a) ≤ (x ⊃ a)

(iv) ((
∨

X) ⊃ a) =
∧
{(x ⊃ a) | x ∈ X}

for all a, x, y ∈ A and X ⊆ A.

Proof. (i). Since x ∧ a ≤ a, this is immediate.
(ii). For each z ∈ A we have

z ≤ x ∧ (x ⊃ a) ⇐⇒ z ≤ x and z ≤ (x ⊃ a)

⇐⇒ z ≤ x and x ∧ z ≤ a ⇐⇒ z ≤ a

for the required result. The last step here requires just a few moment’s thought.
(iii). Let

z = (x ⊃ a)

where x ≤ y. Then
x ∧ z ≤ y ∧ z ≤ a

so that
z ≤ (x ⊃ a)

as required.
(iv). For each z ∈ A we have

z ≤ (
∨

X) ⊃ a ⇐⇒ z ∧
∨

X ≤ a

⇐⇒
∨
{z ∧ x | ∈ X} ≤ a

⇐⇒ (∀x ∈ X)[z ∧ x ≤ a]

⇐⇒ (∀x ∈ X)[z ≤ (x ∈ a)] ⇐⇒ z ≤
∧
{(x ⊃ a) | x ∈ X}

for the required result. notice the use of FDL at the second step. �

Part (iv) of this result is one of the few identities worth remembering. Notice that by
taking X = {x, y} we obtain

((x ∨ y) ⊃ a) = (x ⊃ a) ∧ (y ⊃ a)

as a particular case.
The next definition may look a little strange but, as we will learn, the operator pro-

duced is very important.

1.10 DEFINITION. For a frame A we set

wa(x) = ((x ⊃ a) ⊃ a)

for each a, x ∈ A to produce an operator wa on A. �
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We will use these operators quite a lot. Here are their simple properties.

1.11 LEMMA. For each element a of a frame A, the operator wa is inflationary, mono-
tone, and idempotent, and satisfies

(wa(x) ⊃ a) = wa(x ⊃ a) = (x ⊃ a) wa(x ∧ y) = wa(x) ∧ wa(y)

for each x, y ∈ A.

Proof. For each x ∈ A a use of Lemma 1.9(ii) gives

x ∧ (x ⊃ a) = x ∧ a ≤ a

so that
x ≤ ((x ⊃ a) ⊃ a) = wa(x)

to show that wa is inflationary.
Two uses of Lemma 1.9(iii) shows that wa is monotone.
Before we show that wa we verify the left hand identity. To this end let

z = (wa(x) ⊃ a) = wa(x ⊃ a)

where the right hand equality is an immediate consequence of the definition of wa. Since
x ≤ wa(x), we have

x ∧ z ≤ wa(x) ∧ z ≤ a

so that
z ≤ (x ⊃ a) ≤ wa)x ⊃ a) = z

for the required result.
With this we have

w2
a(x) = ((wa(x) ⊃ a) ⊃ a) = ((x ⊃ a) ⊃ a) = wa(x)

to show that wa is idempotent.
Finally, for x, y ∈ A we have

wa(x ∧ y) ≤ wa(x) ≤ wa(y)

since wa is monotone. This a converse comparison will give the remaining required result.
To this end let

z = wa(x) ≤ wa(y)

so that
z ≤ wa(x) z ≤ wa(y)

to give
z ∧ (x ⊃ a) ≤ a z ∧ (y ⊃ a) ≤ a

and hence, using Lemma 1.9(iv), we have

z ∧ ((x ∧ y) ⊃ a) = z ∧ ((x ⊃ a) ∨ (y ⊃ a)) = (z ∧ (x ⊃ a)) ∨ (z ∧ (y ⊃ a)) ≤ a
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which leads to the required comparison. �

A particular case of implication gives the negation

¬a = (a ⊃ ⊥)

of an element a ∈ A. This is characterized by

z ≤ ¬a ⇐⇒ a ∧ z = ⊥

for z ∈ A. Now this terminology and notation may be confusing you, for in Subsection
1.3 we have used both in conjunction with a complete boolean algebra. Let’s clear that
up.

We say an element a ∈ A of a frame A is complemented if

a ∧ b a ∨ b = >

for some (necessarily unique) element b ∈ A. We then say that b is the complement of a
in A. Notice that this terminology agrees with the boolean case.

1.12 LEMMA. Let A be an arbitrary frame, and consider a ∈ A.
The element a is complemented precisely when ¬a ∨ a = >.
Furthermore, if a is complemented, then its complement is its negation ¬a.

Proof. Suppose first that a is complemented, that is

a ∧ b a ∨ b = >

for some b ∈ A. The first of these gives

b ≤ ¬a

and the second gives

¬a = ¬a ∧ (a ∨ b) = (¬a ∧ a) ∨ (¬a ∧ b) = (¬a ∧ b) ≤ b

to show that ¬a = b, and hence

¬a ∨ a = b ∨ a = >

holds.
Conversely, suppose

¬a ∨ a = >
then, with b = ¬a, we have

a ∧ b = a ∧ ¬a = ⊥ a ∨ b = a ∨ ¬a = >

to show that a is complemented. �

This result show that we can define the notion of a complement element of a frame in
terms of the behaviour of the negation operation on that frame. We extend this idea.
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1.13 DEFINITION. An element a ∈ A of a frame A is, respectively,

complemented regular dense

if
a ∨ ¬a a = ¬¬a ¬a = ⊥

using the negation operation on A. �

Notice that double negation ¬¬(·) is nothing more than the operation w⊥ of Definition
1.10. In particular, for each element a we have

a ≤ ¬¬a ¬¬¬a = ¬a

by a particular case of a part of Lemma 1.11. This shows that a is dense precisely when
¬¬a = >.

This observation also shows that ¬¬a is regular (no matter what element a we start
with). Also, as in the proof of Lemma 1.11 we have

¬(a ∨ ¬b) = ¬a ∧ ¬b

for all elements a, b. In particular, and element of the form a ∨ ¬a is always regular.
Finally, since

a = ¬¬a ∧ (a ∨ ¬a)

we see that each element of a frame is the meet of a regular element and a denser element.
This is a standard lattice theoretic observation.

Definition 1.13 uses standard terminology from lattice theory, but the words are also
used in topology. There is no conflict.

1.14 EXAMPLE. Consider a topology OS viewed as a frame. For each U, V ∈ OS we
have

V ∩ U = ∅ ⇐⇒ V ⊆ U ′ ⇐⇒ V ⊆ U ′◦ = U−′

to show that U−′ is the negation of U in OS. In particular, U is complemented precisely
when

U ∪ U−′ = S ⇐⇒ U−′ = U ′ ⇐⇒ U− = U

in other words when U is clopen.2

Since
¬¬U = U−′−′ = U−◦

we see that U is regular in the sense of Definition 1.13 precisely when it is topologically
regular.

Finally, U is dense in the sense of Definition 1.13 precisely when

U−◦ = ¬¬U = S

equivalently when
U− = S

that is when U is topologically dense. �
2I sometimes tell students that this is where the negation symbol comes from. Some of them don’t

believe me.
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In time we will develop the ideas in this example quite a bit further.
Every complemented element is regular, but in general the converse doesn’t hold. In

fact, we have the following.

1.15 LEMMA. A frame A is boolean precisely when each element is regular.

Proof. Suppose A is boolean, so that

a ∨ ¬a = >

for each element A. On replacing a be ¬a we have

¬a ∨ ¬¬a = >

so that ¬¬a is the complement of ¬a. But this complement is a, so that ¬¬a = a.
Conversely, suppose that ¬¬(·) is the identity function on A. For each a ∈ A we have

¬a ∧ ¬¬a) = ⊥

so that
a ∨ ¬a = ¬¬(a ∨ ¬a) = ¬(¬a ∧ ¬¬a) = ¬⊥ = >

to show that ¬a is the complement of a. �

Most of the calculations in this section have been rather standard, only only occa-
sionally have we needed the completeness of the frame. In due course we will need to go
through several calculations which are more frame specific.

1.5 Morphisms as poset adjunctions

Each frame morphism is a
∨

-preserving function between complete posets. In particular,
as a poset map this function has a right adjoint. This is a useful gadget, and is worth a
bit of notation.

1.16 DEFINITION. For each frame morphism f = f ∗ from frame A to frame B

A
f ∗ -

�
f∗

B

the right adjoint f∗ is the unique monotone map from B to A such that

f ∗(a) ≤ b ⇐⇒ a ≤ f∗(b)

for all a ∈ A and b ∈ B. �

Each of A and B is a poset. If we view each as a category that a functor from one to
the other is just a monotone map. Two such maps are adjoint as functors precisely when
the are adjoint in the sense of Definition 1.16. Here we use upper and lower decorations

f ∗ a f∗
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to distinguish between the left and the right component of the adjunction. (However,
you are warned that some writers don’t use this convention, perhaps because they don’t
understand it.) Finally, not that not every poset adjunction f ∗ a f∗ between a pair of
frames gives a frame morphism f ∗. This left adjoint must also preserve finitary meets.

A simple exercise show that for each frame morphism f ∗ a f∗ (or any poset adjunction)
we have

f∗(
∧

Y ) =
∧

f→∗ (Y )

for each Y ⊆ B. However, f∗ need not be a frame morphism. In fact, it need not preserve
even binary joins.

Each continuous map

T
φ - S

between a pair of spaces gives a frame morphism

OS
φ← - OT

between the carried topologies, and hence produces an adjoint pair

OS
φ∗ -

�
φ∗

OT

where φ∗ = φ← is the left adjoint. What is the right adjoint φ∗? It is reasonable to expect
this to have something to do with direct images.

1.17 LEMMA. For each continuous map φ, as above, the right adjoint φ∗ is give by

φ∗(W ) = φ→(W ′)−′

for each W ∈ OT .

Proof. Consider U ∈ OS and W ∈ OT . We have

U ⊆ φ→(W ′)−′ ⇐⇒ φ→(W ′)− ⊆ U ′

⇐⇒ φ→(W ′) ⊆ U ′

⇐⇒ (∀t ∈ T )[t ∈ W ′ =⇒ φ(t) ∈ U ′]
⇐⇒ (∀t ∈ T )[φ(t) ∈ U =⇒ t ∈ W ]

⇐⇒ (∀t ∈ T )[t ∈ φ←(U) =⇒ t ∈ W ] ⇐⇒ φ←(U) ⊆ W

to verify the required equivalence. �

We said earlier that the right adjoint f∗ of a frame morphism need not preserve even
binary joins. We can illustrate this using two very simple spaces.

1.18 EXAMPLE. Consider the 2-point spaces

T = {l, r} S = {0, 1}

15



with T discrete and with
OS = {∅, {1}, S}

(so that S is sierpinski space). Let

φ(l) = 0 φ(r) = 1

to produce a continuous map from T to S. With

U = {l} V = {r}

we have
φ∗(U ∪ V ) = φ∗(T ) = φ→(∅)−′ = ∅−′ = ∅′ = S

φ∗(U) = φ→(U ′)−′ = φ(r)−′ = {1}−′ = S ′ = ∅
φ∗(V ) = φ→(V ′)−′ = φ(l)−′ = {0}−′ = {0} = {1}

so that
φ∗(U ∪ V ) = S φ∗(U) ∪ φ∗(V ) = {1}

to show that φ∗ is not a ∪-morphism. �

We will, of course, have a lot more to say about frame morphisms in general.

2 The universal algebra of frames

Here by ‘universal algebra’ I don’t mean anything very sophisticated; just some informa-
tion about subframes, and a few of the simple categorical properties of Frm . Quotient
frame are left until the next section.

Given a frame A = (A,≤,∧,>,
∨

,⊥) a subframe is a subset B ⊆ A which is itself a
frame under the restriction of the distinguished attributes of A. Thus >,⊥ ∈ B and B is
closed under binary meets and arbitrary suprema. The FDL then automatically transfers
to B.

This is as must as we need to know about subframes, for they are not very interesting.
However, let’s not dismiss them just yet.

Given frames B ⊆ A we know that any computation involving ∧ and
∨

done in B
agrees with the corresponding computation done in A. However, the implication and
negation on B need not agree with those on A.

2.1 EXAMPLE. Consider two topologies

OS ⊆ �S

on the same set S. Let us write
(·)◦ (·)�

for the two respective interior operations. Thus

E◦ ⊆ E�

for each subset E ⊆ S, and these can be far apart. For U, V ∈ OS the two implications
are given by

(V ⊃ U) = (V ′ ∪ U)◦ (V A U) = (V ′ ∪ U)�

respectively, and these can be very different. �
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Recall that, respectively, an arrow

B
m - A A

e - B

of Frm is
monic epic

if for each parallel pair arrows

C
f -

g
- B B

f -

g
- C

the implication

m ◦ f = m ◦ g =⇒ f = g f ◦ e = g ◦ e =⇒ f = g

hold. Since the arrows in Frm are functions (of a certain kind) we have

m injective =⇒ m monic e surjective =⇒ m epic

by the obvious cancellation argument.
We show that the monics of Frm are precisely the injective arrows, but there are epics

which are not surjective.
To deal with monics we use the 3-element frame

3 =

1
?
0


where 0 < ? < 1. This can be used to separate the elements of an arbitrary frame.

Consider any frame B and any element b ∈ B. consider the function f as on the left

f : 3 - B

f(1)=>
f(?)= b

f(0)=⊥

given by the equalities on the right. Almost trivially this is a frame morphism. Trivially,
every frame morphism from 3 arises in this way.

2.2 THEOREM. In the category Frm the monics are precisely the injective morphisms.

Proof. On general grounds each injective morphism is monic.
Conversely, suppose

B
m - A

is monic and consider any b, c ∈ B with m(b) = m(c). We require b = c. Let

3
f -

g
- B

17



be the pair of arrows determined by

f(?) = b g(?) = c

with f(0), f(1), g(0), g(1) as they must be. We have

(m ◦ f)(?) = m(b) = m(c) = (m ◦ g)(?)

so that
m ◦ f = m ◦ g

and hence
f = g

since m is monic. This gives
b = f(?) = g(?) = c

as required. �

Not every epic in Frm is surjective. We use a particular example to show this. In
fact, the example illustrates a little bit more.

Remember that a bimorphism is a morphism that is both monic and epic. Thus each
isomorphism is a bimorphism. we give an example of a bimorphism that is not surjective,
and not an isomorphism.

2.3 EXAMPLE. Let S be a T1 topological space, with topology OS. The insertion

OS ⊂ - PS

is certainly monic, and is surjective only when S is discrete (so that OS = PS). We show
that the insertion is epic.

Since S is T1, we know that ‘points are closed’. For each point p ∈ S let

Up = {p}′ Xp = {p}

to obtain the
open closed

set attached to p. We have
E =

⋃
{Xp | p ∈ E}

for each subset E ⊆ S.
Consider any morphism

PS
f - C

to an arbitrary frame C. Since Up and Xp are complements in PS, the values

f(Up) f(Xp)

are complements in C. Thus the value f(Xp) is uniquely determined by f(Up).
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consider two morphism

PS
f -

g
- C

which agree on OS. We show that f = g, and hence the insertion is epic.
For each p ∈ S we have

f(Up) = g(Up)

and hence
f(Xp) = g(Xp)

by the remarks above. Consider any E ⊆ S. Using the representation of E in terms of
the Xp, the preservation properties of f and g give

f(E) =
∨
{f(Xp) | p ∈ X} =

∨
{g(Xp) | p ∈ X} = g(E)

for the required result. �

To conclude this section we make a simple observation which, as the story unfolds,
will become more and more important.

Let

2 =

(
1
0

)
1 = (?)

be the 2-element and 1-element frame, respectively. Almost trivially, these are the

initial final

objects of Frm , respectively. In other words, for each frame A there are unique morphisms

2 - A A - 1

given in the obvious way.
This uses 2 as a frame. We can also view it as a topological space. We don’t use the

discrete topology, rather we use

O2 = {∅, {?},2}

the upper section topology. Notice that 3 ∼= O2.
When viewed in this way we refer to the space 2 as the sierpinski space. As we will

find out, this has a controlling interest in point-free topology.

3 Quotients of frames

A quotient of a frame A is a surjective morphism

A
f - B

to some frame B. In particular, the structure of the target B is completely determined by
the structure of the source A and the nature of f . As in almost any algebraic situation,

19



the structure of B can be coded by a congruence on A. However, frames being what
they are, this congruence on A can be replaced by another far more useful and amenable
gadget.

These gadgets, the nuclei on A, are the central components in a family of techniques
which are a distinctive feature of the analysis of frames. We begin to develop these in
Section 4, then more extensively in [4]. In this section we concentrate on characterizing
quotients and thereby showing how nuclei first appear. To do that (and to prepare for
more sophisticated uses) we set the development in a broader context. Thus we look at
quotient in the category Sup of

∨
-semilattices, and to do that we look briefly at quotients

in the category Set of sets.

3.1 Quotients in Set

Almost all algebraic quotients can be obtained by refining a simple construction in the
category Set of sets and functons.

Let A be a set, and let ∼ be an equivalence relation on A. Let

A/∼

be the set of blocks of ∼, the set of ∼-equivalence classes, and let

A
η - A/∼

be the canonical surjection. Thus for each a ∈ A

η(a) = {x ∈ A | a ∼ x}

is the block to which a belongs. In particular, we have

η(x) = η(y) ⇐⇒ x ∼ y

for x, y ∈ A.
Conversely consider any function

A
f - B

from A. Setting
x ≈ y ⇐⇒ f(x) = f(y)

for x, y ∈ A produces an equivalence relation on A. Because of what comes later it is
useful to think of this as the kernel of f .

These two construction are related by the following, rather simple but fundamental,
result.

3.1 THEOREM. Let ∼ be an equivalence relation on the set A and let f be a function
from A, as above. Suppose ∼ is included in the kernel of f , that is we have

x ∼ y =⇒ f(x) = f(y)
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for x, y ∈ A. Then there is a unique function f ] such that

A
f - B

A/∼
f ]

-

η -

commutes.

Proof. Consider any block α ∈ A/∼ and set

f ](α) = f(a)

for any a ∈ α. The compatibility of ∼ with f ensures this is a well-defined function

A/∼ f ]
- B

and trivially we have
(f ◦ η)(a) = f(a)

for each a ∈ A. This shows there is at least one function that makes the triangle commutes.
Since η is surjective this is the only possible fill-in function. �

There are several algebraic refinements of this result. When the two sets A, B carry
similar algebraic structures and f is a companion morphism we may imposed on A/∼ a
similar algebraic structure such that both η and f ] become morphisms.

3.2 Quotients in Sup

The construction of Theorem 3.1 can be refined to obtain a similar factorization of mor-
phisms in many algebraic situations. In the first instance we replace the arbitrary equiv-
alence relation ∼ by a congruence, a special kind of equivalence relation that respects
the distinguished attributes. Then, if we are lucky, we can replace that congruence by
another, more amenable, gadget. For instance, for groups or rings the congruence can be
replaced by a particular one of its blocks, the normal subgroups or ideals, respectively.
However, these two version still involve dealing with block representatives, which is always
a nuisance. A similar thing happens with

∨
-semilattices and frames, but for these the

replacement has a quite different character and does not require block representatives.
Before we get to these new gadgets we nee to sort out what a Sup-congruence is. And

before that I suppose I should tell you what the category
∨

is.

3.2 DEFINITION. The objects of the category Sup are the complete posets. When viewed
in this way we refer to such an object as a

∨
-semilattice.

An arrow

A
f - B

of Sup, or
∨

-morphism, is a function

f : A - B
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between to
∨

-semilattices such that

f(
∨

X) =
∨

f→(X)

for each X ⊆ A. �

Each
∨

-semilattice is a complete poset, and so has all infima as well as all suprema.
However, a

∨
-morphism f need not preserve any infima, even binary meets. Note that

since ⊥ =
∨
∅, such a

∨
-morphism must preserve bottom, but it need not preserve top.

You should think about this, and make sure you understand why.
We can now begin to sort out what a Sup-congruence is. To do that it is convenient

to introduce a bit of temporary notation.
Let A be a

∨
-semilattice, and ∼ be an equivalence relation on A. When is ∼ a

Sup-congruence on A? Let

X = {xi | i ∈ I} Y = {yi | i ∈ I}

be a pair of similarly indexed subsets of A (that is, over the same index set). We write

X ∼ Y

if
(∀i ∈ I)[xi ∼ yi]

that is if X and Y are point-wise equivalent.

3.3 DEFINITION. An equivalence relation ∼ on a
∨

-semilattice A is a Sup-congruence
if we have

X ∼ Y =⇒
∨

X ∼
∨

Y

for each similarly indexed pair X, Y of subsets of A. �

Let

A
f - B

be a
∨

-morphism. As in the Set -case, the kernel of f is the equivalence relation ≈ on A
given by

x ≈ y ⇐⇒ f(x) = f(y)

for x, y ∈ A. The morphism property translates into the following.

3.4 LEMMA. The kernel of a
∨

-morphism is a Sup-congruence on the source algebra.

Our job here is to produce a converse of this result, We show that every Sup-
congruence is obtained from a

∨
-morphism.

Consider how we might do that.
Let A be a

∨
-semilattice and let ∼ be a Sup-congruence on A. As in the Set -case,

consider the function

A
η - A/∼
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which sends each element to its block. The idea is to furnish A/∼ as a
∨

-semilattice in
such a way that η becomes a

∨
-morphism. How might we furnish A/∼ with a supremum

operation? Consider a subset X of A/∼. By choosing block representatives we can view
this as

X = η→[X]

for some subset X of A. The idea is to define∨
X = η(

∨
X)

which automatically ensures that η is a
∨

-morphism. There is, of course, some work
to be done. We must show that the definition of this ‘supremum’ operation in A/∼ is
independent of the choice of block representatives. We also have to show that it is a
supremum operation, which mean we should first set up a partial ordering on A/∼ and
show that η is monotone.

All this can be done, but it’s messy and, thankfully, avoidable. The cause of the mess
is the use of arbitrary block representatives. This can be cleaned up using special block
representatives.

3.5 LEMMA. Let ∼ be a Sup-congruence on a
∨

-semilattice A. Then each ∼-block has
a unique largest member.

Proof. Consider any a ∈ A. Let

X = {xi | i ∈ I}

be an indexing of the block to which a belongs. Also let

Y = {yi | i ∈ I}

where yi = a for each i ∈ I. By construction we have

X ∼ Y

so that (since ∼ is a Sup-congruence)∨
X ∼

∨
Y = a

to show that
∨

X is the largest member of the block in question. �

In the standard congruence situation each block is handled by some block represen-
tative, some member of that block. In general any one representative is no better than
any other. However, Lemma 3.5 shows that each block of a Sup-congruence has a special
representative, and that is the one we use. We also use the operator which attaches to
each element its largest mate.

3.6 DEFINITION. Let ∼ be a Sup-congruence on a
∨

-semilattice A. The selector for ∼
is the operator j : A - A given by

j(a) =
∨
{x ∈ A | a ∼ x}

for each a ∈ A. �
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By construction, if j is the selector of the congruence ∼ on A then we have

(•) a ∼ j(a) (••) x ∼ a =⇒ x ≤ j(a)

for all a, x ∈ A. These two properties characterize being the selector of ∼, and enable
us to see selectors in a different light. Recall that a closure operation on A is a function
j : A - A which is inflationary, monotone, and idempotent, that is

(i) a ≤ j(a) (m) b ≤ a =⇒ j(b) ≤ j(a) (c) j(j(a)) = j(a)

for all a, b ∈ A.

3.7 LEMMA. Let A be a
∨

-semilattice.
The selectors on A are precisely the closure operators.
Each closure operation is the selector of precisely one congruence.
There is a bijective correspondence between Sup-congruence relations and closure op-

erators on A.

Proof. Suppose that j is the selector of the congruence ∼ on A. We use the two
properties (•) and (••) from above to show that j is a closure operation on A.

For each a ∈ A we have a ∼ a, so that (••) gives a ≤ j(a), to show that j is
inflationary.

Consider a, b ∈ A with b ≤ a. We have

a ∼ j(a) b ∼ j(b)

by (•), so that
j(a) ∨ j(b) ∼ a ∨ b = a

by the congruence property, and hence

j(b) ≤ j(a) ∨ j(b) ≤ j(a)

by (••). This shows that j is monotone.
Consider any a ∈ A and let b = j(j(a)). We have

a ∼ j(a) ∼ b

by two uses of (•), so that b ∼ a, and hence b ≤ j(a) by (••). The converse comparison
j(a) ≤ b holds since j is inflationary. This shows that j is idempotent.

These three small arguments show that the selector j is a closure operation.

Suppose j is a closure operation on A. We show that j is the selector of at least one
congruence on A. To this end consider the relation ∼ on A given by

x ∼ y ⇐⇒ j(x) = j(y)

for x, y ∈ A. Trivially, this is an equivalence relation on A. To show it is a congruence
relation suppose X ∼ Y for two similarly indexed subsets X, Y of A. For each y ∈ Y
there is some x ∈ X with x ∼ y, so that

y ≤ j(y) = j(x) ≤ j(
∨

X)
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by the inflationary and monotone properties of j. Thus∨
Y ≤ j(

∨
X)

to give
j(

∨
Y ) ≤ j(j(

∨
X)) ≤ j(

∨
X)

by the monotone and idempotent properties of j. By symmetry this gives

j(
∨

X) = j(
∨

Y ) and hence
∨

X ∼
∨

Y

as required to show that ∼ is a congruence on A.
The idempotent and inflationary properties of j ensure that (•) and (••) hold, and

hence j is the selector of ∼.

Trivially (by definition) each congruence has just one selector. Thus, to complete
the whole proof it suffices to show that each closure operation is the selector of just one
congruence. We show that if j is the selector of the congruence ∼ then

x ∼ y ⇐⇒ j(x) = j(y)

for each x, y ∈ A.
Consider x, y ∈ A with x ∼ y. By hypothesis, j is the selector of ∼, and hence

x ≤ j(y) y ≤ j(x)

by two uses of (••). Thus j(x) = j(y) by the monotone and idempotent properties of j.
Consider x, y ∈ A with j(x) ∼ j(y). By hypothesis, j is the selector of ∼, and hence

x ∼ j(x) = j(y) ∼ y

by two uses of (•). Thus x ∼ y since ∼ is an equivalence relation. �

This result enables us to do away with any use of block representatives, and to replace
the use of congruences by the use of closure operators. In time this will give us a collec-
tion of powerful techniques for analysing

∨
-semilattices, but for now we concentrate on

producing a Sup-version of Theorem 3.1.

3.8 DEFINITION. Let A be a
∨

-semilattice.
A subset F ⊆ A is

∧
-closed if

∧
X ∈ F for each X ⊆ F .

For a closure operation j on A we set

Aj = j→(A) = {x ∈ A | j(x) = x}

to obtain the set of fixed elements of j. �

Observe that if F ⊆ A is
∧

-closed then, by considering ∅ ⊆ F , we have > =
∧
∅ ∈ F ,

and hence F is non-empty. These
∧

-closed sets have a more important property.

3.9 LEMMA. Let A be a
∨

-semilattice.
For each closure operation j on A the subset Aj is

∧
-closed.

For each
∧

-closed subset F ⊆ A there is a unique closure operation j on A with
F = Aj

There is a bijective correspondence between closure operations on A and
∧

-closed
subsets.
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Proof. Let j be a closure operation on A and consider X ⊆ Aj. For each x ∈ X we
have

∧
X ≤ x so that

j(
∧

X) ≤ j(x) = x

and hence j(
∧

X) ≤
∧

X to show that
∧

X ∈ Aj .

Let F be
∧

-closed in A. For each a ∈ A set

j(a) =
∧
{x ∈ F | a ≤ x}

to obtain an operator j on A. Almost trivially, this j is inflationary and monotone.
Furthermore, for each a ∈ A we have

j(a) ∈ F a ∈ F =⇒ j(a) = a

(where the
∧

-closed property gives the left hand condition). In combination these two
conditions give

j(j(a)) = j(a)

(for each a ∈ A), to show that j is idempotent, and hence is a closure operation.
The right hand condition gives F ⊆ Aj. Conversely, if a ∈ Aj then a = j(a) ∈ F by

the left hand condition, to show F = Aj.

Finally, suppose we have Aj = Ak for closure operations on A. Consider any a ∈ A.
We have j(a) ∈ Aj = Ak, so that

k(j(a)) = j(a)

and hence
k(a) ≤ k(j(a)) = j(a)

by the inflationary property of j and the monotone property of k. A similar argument
gives j(a) ≤ k(a), and hence j = k. �

We now have enough background to begin the Sup-analogue of Theorem 3.1.
Let A be a

∨
-semilattice, and let j be a closure operation on A. Remember that we

think of j as a more socially acceptable version of a Sup-congruence on A. Consider the
function

A
j∗ - Aj

a - j(a)

(and do not confuse this with the very similar function j). Since Aj is a subset of A it
inherits a comparison from A, so Aj is at least a poset. We show a bit more.

3.10 LEMMA. Consider the situation above.
For each subset X ⊆ Aj, the element j(

∨
X) is the supremum of X in Aj.

The poset (Aj ,≤) is complete.
The assignment j∗ is a Sup-morphism.
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Proof. Consider X ⊆ Aj. For each x ∈ X we have

x ≤
∨

X ≤ j(
∨

X) ∈ Aj

so that j(
∨

X) is an upper bound of X in Aj. Let a ∈ Aj be any upper bound of X in
Aj . We have ∨

X ≤ a

(in A) so that
j(

∨
X) ≤ j(a) = a

to show that j(
∨

X) is the least upper bound of X in Aj.

This also shows that Aj is complete (as a poset).

To show that j∗ is a Sup-morphism we require

j∗(
∨

X) = j(
∨

j∗→(X))

for each X ⊆ A. The element on the right hand side is the supremum of the subset
j∗→(X)) in Aj . This required equality rephrases as

j(
∨

X) = j(
∨
{j(x) | x ∈ X})

and we verify this via two comparisons.
For each x ∈ X we have

x ≤ j(x) ≤
∨
{j(x) | x ∈ X})

so that ∨
X ≤

∨
{j(x) | x ∈ X})

and hence
j(

∨
X) ≤ j(

∨
{j(x) | x ∈ X})

since j is monotone.
Conversely, for each x ∈ X we have

x ≤
∨

X

so that
j(x) ≤ j(

∨
X)

to give ∨
{j(x) | x ∈ X} ≤ j(

∨
X)

and hence
j(

∨
{j(x) | x ∈ X}) ≤ j2(

∨
X) = j(

∨
X)

since j is monotone and idempotent. �

By Lemma 3.4 each Sup-morphism

A
f - B
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has a kernel ≈ given by
x ≈ y ⇐⇒ f(x) = f(y)

for x, y ∈ A. This, of course, views the kernel as a congruence. By Lemma 3.7 we may
re-view this congruence as a closure operation k given by

k(x) = k(y) ⇐⇒ x ≈ y

for x, y ∈ A. These two characterizations enable us to move directly from the morphism
f to the closure operation k.

3.11 DEFINITION. For each Sup-morphism f , as above, the kernel of f is the unique
closure operation k on A (the source of f) such that

k(x) = k(y) ⇐⇒ f(x) = f(y)

for all x, y ∈ A. �

This definition uniquely specifies the kernel of a morphism, but doesn’t really tell us
what it is. To discover that we remember that each Sup-morphism has a right adjoint

A
f ∗ -

�
f∗

B

which, as I promised you earlier, has its uses.

3.12 LEMMA. For each Sup-morphism f ∗ a f∗, as above, the kernel is the composite
f∗ ◦ f ∗.

Proof. By the general properties of poset adjunctions we know that k = f∗ ◦ f ∗ is a
closure operation on the source A. Thus it suffices to show that

(f∗ ◦ f ∗)(x) = (f∗ ◦ f ∗)(y) ⇐⇒ f ∗(x) = f ∗(y)

holds for all x.y ∈ A. The implication ⇐ is immediate, and the converse holds since
f ∗ ◦ f∗ ◦ f∗ = f∗. �

With a little bit more work we can characterize the kernel directly in terms of the
morphism without using the right adjoint.

3.13 COROLLARY. For each Sup-morphism f , as above, the kernel is the closure oper-
ation k such that

x ≤ k(a) ⇐⇒ f(x) ≤ f(a)

for each x, a ∈ A.

Proof. We have
x ≤ f∗(y) ⇐⇒ f ∗x ≤ y

for each x ∈ A and y ∈ B. Setting y = f(a) = f ∗(a) gives the required result. �

Finally we can prove the
∨

-refinement of Theorem 3.1.
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3.14 THEOREM. Let j be a closure operation on the
∨

-semilattice A, and let

A
f - B

be a Sup-morphism with kernel k. Suppose j ≤ k. Then there is a unique Sup-morphism
f ] such that

A
f - B

Aj

f ]

-

j∗ -

commutes.

Proof. Since j∗ is surjective, there can be at most one such fill-in morphism f ].
For each a ∈ A we have

k(k(a)) = k(a)

so that
f(k(a)) = f(a)

by one of the characteristic properties of the kernel k of f . We also have

a ≤ j(a) ≤ k(a)

so that
f(a) ≤ f(j(a)) ≤ f(k(a)) = f(a)

and hence
f(j(a)) = f(a)

by the previous observation.
For each x ∈ Aj set

f ](x) = f(x)

to obtain a function f ] : Aj
- B. We have just seen that

(f ] ◦ j∗)(a) = f(j(a)) = f(a)

for each a ∈ A, so it suffices to show that f ] is a Sup-morphism.
We require

f ](
∨̆

X) =
∨

f ]→(X)

for each X ⊆ Aj . Here
∨̆

is the supremum operation on Aj. This condition unravels as

f(j(
∨

X)) = f→(X)

which, since f ◦ j = f , reduces to the given morphism property of f . �

As you can probably guess, we are going to refine this result even further by replacing
Sup by Frm .
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3.3 Quotients in Frm

The results of Subsection 3.2 are important in a wider context, but here we are primarily
concerned with frames. Each frame morphism

A
f - B

is a
∨

-morphism of a special kind. As such it has a kernel j given by

x ≤ j(a) ⇐⇒ f(x) ≤ f(a)

for x, a ∈ A. This j is a closure operation on A, of a special kind. Our job in this
subsection is to isolate and begin to investigate these special closure operations

3.15 DEFINITION. A nucleus on a frame A is a closure operation j on A such that

j(a ∧ b) = j(a) ∧ j(b)

for all a, b ∈ A. �

If you think about it you have already seen one family of examples of nuclei. We will
return to those examples later.

3.16 LEMMA. The kernel of a frame morphism is a nucleus on the source.

Proof. Consider a frame morphism f with its kernel j, as above. For a, b ∈ A (the
source of f and carrier of j) we have

f(a ∧ b) = f(a) ∧ f(b)

and we require a corresponding equality for j. For each x ∈ A the characterizing property
of j gives

x ≤ j(a ∧ b) ⇐⇒ f(x) ≤ f(a ∧ b) = f(a) ∧ f(b)

⇐⇒ f(x) ≤ f(a) and f(x) ≤ f(b)

⇐⇒ x ≤ j(a) and x ≤ j(b) ⇐⇒ x ≤ j(a) ∧ j(b)

so that
j(a ∧ b) = j(a) ∧ j(b)

as required. �

Of course, we want to show that every nucleus arises as the kernel of a frame morphism.
To do that we refine the ideas of Defintion 3.8.

3.17 DEFINITION. A fixed set of a frame A is a
∧

-closed subset F ⊆ A such that

a ∈ Aj =⇒ (x ⊃ a) ∈ Aj

for all a, x ∈ A. �
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By Lemma 3.9 the closure operations on a frame A correspond to the
∧

-subsets. This
correspondence refines as follows.

3.18 LEMMA. A closure operation j on a frame A is a nucleus precisely when its set Aj

of fixed elements is a fixed set.

Proof. Suppose first that j is a nucleus and consider

y = (x ⊃ a)

for a ∈ Aj and arbitrary x ∈ A. We have x ∧ y ≤ a, so that

x ∧ j(y) ≤ j(x) ∧ j(y) ≤ j(x ∧ y) ≤ j(a) = a

to give
j(y) ≤ (x ⊃ a) = y

and hence y ∈ Aj. This shows that Aj is a fixed set.
Conversely, suppose Aj is a fixed set, and consider arbitrary x, y ∈ A. It suffices to

show that
j(x) ∧ j(y) ≤ j(x ∧ y)

(since the converse comparison is a consequence of the monotonicity of j). Let a = j(x∧y),
so that a ∈ Aj . We have

x ∧ y ≤ j(x ∧ y) = a

so that
y ≤ (x ⊃ a) ∈ Aj

to give
j(y) ≤ (x ⊃ a)

and hence
x ∧ j(y) ≤ a

holds. A repeat of this argument (with x and y playing different roles) gives

j(x) ∧ j(y) ≤ a

which is the required result. �

Each nucleus j on a frame A has a fixed set Aj and, by Lemma 3.10, j induces a∨
-morphism from A ro Aj with j as its kernel. This refines as follows.

3.19 LEMMA. Let j be a nucleus on the frame A. The fixed set Aj is a frame, and the
assignment

A
j∗ - Aj

a - j(a)

is a frame morphism.
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Proof. By Lemma 3.10 the poset (Aj,≤) is complete. Thus, by Lemma 1.7, it suffices
to show that Aj carries an implication. But Lemma 3.18 shows that Aj is closed under
the implication carried by A, and it is easy to check that this provides an implication on
Aj .

By Lemma 3.10 the assignment j∗ is a Sup-morphism, thus we require

j∗(x ∧ y) = j∗(x) ∧ j∗(y)

for x, y ∈ A. This is immediate since j is a nucleus. �

With this we can prove the refinement of Theorem 3.14.

3.20 THEOREM. Let j be a nucleusn on the frame A, and let

A
f - B

be a frame morphism with kernel k. Suppose j ≤ k. Then there is a unique frame
morphism f ] such that

A
f - B

Aj

f ]

-

j∗ -

commutes.

Proof. By Theorem 3.14 there is a unique Sup-morphism f ] for which the triangle
commutes. Thus it suffices to show that this f ] satisfies

f ](x ∧ y) = f ](x) ∧ f ](y)

for x, y ∈ Aj . This is an immediate consequence of the definition of f ] since Aj ⊆ A and
f is a frame morphism. �

The results of this section show that we ought to find out a lot more about nuclei. We
begin that in the next section.

4 Nuclei on frames

As in Definition 3.15, a nucleus j on a frame A is a closure operation that passes across
binary meets. The results of Subsection 3.3 suggest that these nuclei have a role to play
in the analysis of frames. In fact, as we will see later, they have a considerable impact on
the whole subject. In this section we look at a few of the basic examples and results.

4.1 DEFINITION. For each element a of a frame A we set

ua(x) = (a ∨ x) va(x) = (a ⊃ x) wa(x) = ((x ⊃ a) ⊃ a)

for each x ∈ A, to obtain three operators on A. �
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The operators wa are the same as those introduced in Definition 1.10, and we now see
that Lemma 1.11 shows that each of these is a nucleus. That is the harder part of the
proof of the following.

4.2 LEMMA. For each frame A and a ∈ A, the three operators ua, va, wa are nuclei on A.

Several straight forward calculations show that ua and va are nuclei, but let’s look at
another proof.

The kernel of each frame morphism is a nucleus on the source. This can be a useful
way of showing that an operator is a nucleus. Here is a simple example of this technique.

4.3 EXAMPLE. Let A be a frame and let a ∈ A be an arbitrary element. Consider the
two principal sections

[a,>] [⊥, a]

above and below a. Each of these is a complete poset in its own right. In fact, after a few
moment’s thought we see that each is a frame in its own right (but neither is a subframe
of A, unless a takes an extreme position). However, each of the two assignments

A
f - [a,>] A

f - [⊥, a]

y - a ∨ y y - a ∧ y

is a surjective frame morphism. (You should check this and notice how the FDL is used.)
Each of these morphisms has a kernel k given by

y ≤ k(x) ⇐⇒ a ∨ y ≤ a ∨ x y ≤ k(x) ⇐⇒ a ∧ y ≤ a ∧ x

respectively. These give
k = ua k = va

to show that ua and va are nuclei on A.
The fixed set Aua of ua is precisely the interval [a,>] we started from. This fixed set

Ava of va is not the interval [⊥, a], but is is canonically isomorphic to this interval. �

In a spatial situation the u• and v• nuclei have a common generalization.

4.4 DEFINITION. Let S be a space with topology OS, and let E ⊆ S. We set

[E](U) = (E ∪ U)◦

for each U ∈ OS, to produce an operator on OS. �

Observe that for an open set A ∈ OS we have

[A](U) = A ∪ U

for each U ∈ OS, and so [A] = uA on OS. Similarly, we have

[A′](U) = (A′ ∪ U)◦ = (A ⊃ U)

for each U ∈ OS, and so [A′] = vA on OS. Later we will see that ua and va are
complementary on an arbitrary frame.

A proof of the following is straight forward.
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4.5 LEMMA. For each space S with topology OS and each E ⊆ S, the operator [E] is a
nucleus on OS.

Proof. Trivially, the operator [E] is inflationary and monotone. For F, G ⊆ S we have

(F ∩G)◦ = F ◦ ∩G◦

and hence [E] is a pre-nucleus. Finally, for U ∈ OS we have

[E]2(U) = [E]([E](U)) = (E ∪ (E ∪ U)◦)◦ ⊆ (E ∪E ∪ U)◦ = (E ∪ U)◦ = [E](U)

to show that [E] is idempotent. �

As with the u• and v• nuclei, it is instructive to see [E] exhibited as the kernel of a
frame morphism. To do this consider a continuous map

T
φ - S

from a space T to a space S. From Lemma 1.17 this induces a frame morphism and its
adjoint

OS
φ∗ -

�
φ∗

OT

where
φ∗(U) = φ←(U) φ∗(W ) = φ→(W ′)−′

for each U ∈ OS and V ∈ OT . This morphism has a kernel

φ∗ ◦ φ∗

which has a simpler description.

4.6 LEMMA. For the situation above the kernel of φ← is [E] where E = T − φ→(S), the
complement of the range of φ.

Proof. Let k be the kernel of φ←. Remembering the characterization k given by
Corollary 3.13, for each U, V ∈ OS we have

V ⊆ k(U) ⇐⇒ φ←(V ) ⊆ φ←(U)

⇐⇒ (∀t ∈ T )[φ(t) ∈ V =⇒ φ(t) ∈ U ]

⇐⇒ (∀s ∈ φ→(T ))[s ∈ V =⇒ s ∈ U ]

⇐⇒ φ→(T ) ∩ V ⊆ U

⇐⇒ V ⊆ E ∪ U ⇐⇒ V ⊆ [E](U)

to give the required result. �

This idea deserve a bit of terminology.
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4.7 DEFINITION. A nucleus on a topology OS is spatially induced if it has the form [E]
for some E ⊆ S. �

In general for a space there are nuclei on OS that are not spatially induced. In fact,
as we will see in [6] every nucleus on a topology is spatially induced precisely when the
parent space has a certain amount of pathology. Thus we could say that it is those nuclei
on a topology that are not spatially induced that are the interesting ones.

We first met the nuclei w• in Subsection 1.4, where I said they are important gadgets.
Here is one (but not the only) reason for saying that.

4.8 LEMMA. For each frame A and element a ∈ A, when viewed as a frame the fixed set

Awa

is boolean.

Proof. Observe that
a = wa(⊥)

is the bottom of Awa . Consider any x ∈ Awa . We must produce some y ∈ Awa with

x ∧ y = a wa(x ∨ y) = >

where, of course, wa(x ∨ y) = > is the join of x and y in Awa .
Let

y = (x ⊃ a)

so that
wa(y) = wa(x ⊃ a) = (wa(x) ⊃ a) = (x ⊃ a) = y

By Lemma 1.11. In particular, y ∈ Awa . Also

x ∧ y = x ∧ a = a

since a ≤ x. Thus it remains to deal with the join in Awa .
Using Lemma 1.9(iv) we have

((x ∨ y) ⊃ a) = (x ⊃ a) ∧ (y ⊃ a) = y ∧ (y ⊃ a) = a

since a ≤ y. Thus
wa(x ∨ y) = (a ⊃ a) = >

for the required result. �

Each nucleus wa gives a boolean quotient. What is more interesting is that ever
boolean quotient arises in this way.

4.9 THEOREM. Suppose

A
f - B

is a surjective frame morphism with a boolean target B. Then the kernel k of f is wa

where a = k(⊥).
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Proof. In this proof it is convenient to write

⊥A >A ⊥B >B

for the extremes of the two frames. Thus a = k(⊥A), and satisfies f(a) = ⊥B.
We first check that

(x↑) f(x) ∨ f(x ⊃ a) = >B

(x↓) f(x) ∧ f(x ⊃ a) = ⊥B

for each x ∈ A.
For (x↓) we have

f(x) ∧ f(x ⊃ a) = f(x ∧ (x ⊃ a)) = f(x ∧ a) ≤ f(a) = ⊥B

to give the equality. This does not use any properties of B.
For (x↑) we know that f(x) has a complement in B and this is the image of some

element of A. Thus we have
f(x) ∨ f(z) = >B

f(x) ∧ f(z) = ⊥B

for some z ∈ A. The lower one of these gives

f(x ∧ z) ≤ f(⊥A)

so that
x ∧ z ≤ k(⊥A) = a

(since k is the kernel of f) and hence

z ≤ (x ⊃ a)

which with the upper one leads to

f(x) ∨ f(x ⊃ a) ≥ f(x) ∨ f(z) = >B

as required.
From (x↑, x↓) we have

b ≤ f(x) ⇐⇒ b ∧ f(x ⊃ a) = ⊥B

for each b ∈ B. Thus, for each y ∈ A we have

y ≤ k(x) ⇐⇒ f(y) ≤ f(x)

⇐⇒ f(y) ∧ f(x ⊃ a) = ⊥B = f(⊥A)

⇐⇒ f(y ∧ (x ⊃ a)) ≤ f(⊥A)

⇐⇒ y ∧ (x ⊃ a) ≤ k(⊥A) = a

⇐⇒ y ≤ (x ⊃ a) ⊃ a ⇐⇒ y ≤ wa(x)

to give the required result. �

Each nucleus j on the frame A produces a quotient

A
j∗ - Aj
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to the frame Aj of element fixed by j. Furthermore, each quotient of A arises in this way
(up to a unique isomorphism over A). We have seen that ua and va arise from

A - [a,>] A - [⊥, a]

respectively, where a little bit of care is needed with the right hand quotient. What about

A
j∗ - Awa

for arbitrary a? To answer that we first look at the particular case a = ⊥.
For each x ∈ A we have

w⊥(x) = ((x ⊃ ⊥) ⊃ ⊥)¬¬x

so that w⊥ is just double negation on A. In particular

Aw⊥ = A¬¬ = {x ∈ A | ¬¬x = x}

is the set of regular elements of A. This is converted into a frame using

x ∨̆ y = ¬¬(x ∨ y) = ¬(¬x ∧ ¬y)

as the join of x and y in A¬¬. This is well known in topological circles.

4.10 EXAMPLE. For the topology OS on a space S the frame (OS)¬¬ is the complete
boolean algebra of regular open sets of S.

We know that a regular element of OS is just a regular open set. For two such sets
U, V the join in (OS)¬¬ is given by

U ∨ V = ¬¬(U ∪ V ) = (U ∪ V )−◦

which is precisely the way we convert the regular open sets into a boolean algebra. �

For each a ∈ A the quotient Awa is a complete boolean algebra. We have just seen
that

A¬¬ = Awbot

is the analogue of the boolean algebra of regular pen sets. To deal with Awa for arbitrary
a we look at the interval

[a,>]

as a frame. What is the negation of an element x ∈ [a,>] in [a,>]? It is that element
y ∈ [a,>] such that

z ≤ y ⇐⇒ z ∧ x ≤ a

for z ∈ [a,>]. In other words it is (x ⊃ a), which does live in [a,>]. Furthermore, the
double negation of x in [a,>] is just wa(x). Thus

[a,>]¬¬ = Awa

to verify the following.
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4.11 LEMMA. For each element a ∈ A of the frame A the kernel of the obvious composite
morphism

A - [a,>] - [a,>]¬¬

is wa.

We will return to the nuclei wa many times during the course of these sets of notes.
We conclude this section with a little result which is occasionally useful.

4.12 LEMMA. Let j be a nucleus on a boolean frame A. Then j = ua where a = j(⊥).

Proof. For each x ∈ A we have

a = j(⊥) ≤ j(x) x ≤ j(x)

so that
a ∨ x ≤ j(x)

and it suffices to show the converse comparison.
Consider the negation ¬x of x in A. We have

x ∧ ¬x = ⊥

so that
j(x) ∧ ¬x ≤ j(x) ∧ j(¬x) = j(x ∧ ¬x) = j(⊥) = a

and hence
j(x) ≤ a ∨ x

since A is boolean. �

In a way, this shows that, as frames, complete boolean algebras don’t hold much
interest.

5 Various reflections

In the course of these notes we hyave met several functors, some explicitly and some
implicitly. Let’s collect together in one place the important ones. As we do this you may
complain that some of the categories involved have not yet been defined. Don’t wory.
You will have a rough idea of what each category is, and precise definition are given in
the following subsections at the appropriate place.

By definition, each frame is both a ∧-semilattice and a
∨

-semilattice both carried by
the same poset. Thus, as indicated in Subsection 1.1, there are two functors

Meet � Frm Sup � Frm

where each forgets part of the carried structure. (You will soon see why these have been
written from right to left.) The functor to Meet can be factorized through the category
Dlt of d-lattices

Meet � Dlt � Frm
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where each functor forgets both stucture and property in various degrees. There is also
an extremely forgetful functor

Set � Frm

to the category of sets and functors. In this section we consider the problem of providing
reflections for most of these functors.

Before we begin that there are two other functors

Frm - Top CBA - Frm

that are worth mentioning. These are significantly different in several ways.
The first, from Frm to Top appears in Subsection 1.2. This is contravriant, so it

does not make sense to think of it as forgetful. Nevertheless, it does have an adjoint, that
is it is part of a contravariant adjunction between Frm and Top . This the central topic
of [5].

The second, from CBA to Frm appears in Subsection 1.3, and is forgetful. However,
it does not have a reflection (for set theoretical reasons). This is the central topic of [7].

5.1 Reflections in general

It seems obvious that we should start with a definition of ‘forgetful’ functor. There is
such a definition but it isn’t much use. Here we use the terminolgy in an informal way.
We don’t need a precise definition since we only consider a finite number of examples,
and we will all agree that these functors are forgetful.

For us a functor

Gauch �
G

Fine

is forgetful if ‘G’ can be omitted in calculations without causing too much confusion.
Thus G converts each Fine-object A into a Gauch-object GA which we can think of as
A viewed as a Gauch-object. For instance, each frame can be viewed as a

∨
-semilattice,

a d-lattice, a ∧-semilattice, or even as a set. We simply ignore some of its structure or
property. Similarly G converts each Fine-arrow f into a Gauch-arrow G(f) which we
can think of as f viewed as a Gauch-arrow. For instance, each frame norphism f can
be viewed as a

∨
-morphism, a lattice morphism, a ∧-semilattice morphism, or even just

as a function. We simply ignore some of its preservation properties.
Suppose we have a functor G, as above, which we can think of forgetful. A reflection

(over G) or a left adjoint F a G is a functor

Gauch
F- Fine

which iteracts with G in a certain way. For what we do here the following is the most
appropriate characterization. Remember that a forgetful functor need not be mentioned
in calculations.

5.1 DEFINITION. Let G, as above, be a forgetful functor. Let S be a Gauch-object.
A reflection of S into Fine is a selected Gauch-arrow

S
ηS - FS

to a selected Fine-object FS with the following universal property.
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For each Gauch-arrow

S
f - A

to a Fine-object A there is a unique Fine-arrow

FS
f ]

- A

such that

S
f - A

FS

f ]

-

ηS -

commutes.

We say Fine is reflective in Gauch (via G) if each Gauch-object has a reflection in
Fine . �

Notice the stucture of this definition. We first consider when a single Gauch-object
S can be reflected into Fine , and the we impose that conditions on all Gauch -objects.
There are some forgetful functors for which only certain objects can be reflected. An
analysis of one such example is the central topic of [7]. Here we consider only cases where
all objects can be reflected.

Notice that in Definition 5.1 I omitted to mention the functor G in certain places. For
instance, the selected arrow shold be

S
ηS - (G ◦ F)S

since it lives in Gauch . If you find this confusing, then write out the definition in full
and try to prove the following standrad result concerning adjunctions.

5.2 THEOREM. Let G be a forgetful functor, as above. Suppose each Gauch-objet has a
reflection

S
ηS - (G ◦ F)S

into Fine Then

S - FS

is the object assignment of a functor

Gauch
F- Fine

and the Gauch-arrow ηS is natural for variation of S.
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Observe that in the defintion of a reflection

S
ηS - FS

each Gauch -arrow

S
f - A

must factor uniquely through ηS. This uniqueness can often be seen as a special property
of ηS.

5.3 DEFINITION. Let G, as above, be a forgetful functor. Let S be a Gauch-object, and
let

S
ηS - FS

be a selected Gauch-arrow to a Fine-object FS.
We say ηS is Fine-epic if

g ◦ ηS = h ◦ ηS =⇒ g = h

holds for each parallel pair

FS
g -

h
- A

of Fine-arrows. �

This terminology would not be acceptable to a hard line category theorist, but the
notion is still useful.

5.2 Reflection from Meet

Recall that a ∧-semilattice is a structure

(S,≤,∧,>)

where (S,≤) is a poset with top > and ∧ is a binary meet on S, that is a binary operation
such that

z ≤ x ∧ y ⇐⇒ z ≤ x and z ≤ y

for all x, y, z ∈ S. These are the objects of Meet . A morphism

S
f - T

between two such object is a function f (from S to T ) such that

f(>) = > f(x ∧ y) = f(x) ∧ f(y)

for all x, y ∈ S. Such a morphism is automatically monotone. These are the arrows of
Meet .

Each frame is, can be viewed as, a ∧-semilattice, and each frame morphism is, can
be viewed as, a ∧-semilattice morphism. This gives the forgetful functor from Frm to
Meet . Our job in this subsection is to describe the reflection in the other direction.

41



5.4 DEFINITION. Let S be a poset.
A lower section of S is a subset L ⊆ S such that

y ≤ x ∈ L =⇒ y ∈ L

(for x, y ∈ S).
Let LS be the poset of all lower sections of S under inclusion.

A simple exercise shows that for each subfamily X ⊆ LS (where S is a poset) both⋃
X and

⋂
X is a lower section. In particular, LS is a complete lattice (of a concrete

kind). Since LS sits inside the power set of S another simple calculation shows that LS
is a frame. (In fact, LS is a topology on S but we don’t need that here.)

5.5 DEFINITION. Let S be a poset.
For each a ∈ S

λS(a) = ↓a = {x ∈ S | x ≤ a}
is the principal lower section generated by a. �

This gives a function
λS : S - LS

and, almost trivially, this is monotone. This construction can be carried out for any poset
S. When S is a ∧-semilattice we get a bonus.

5.6 LEMMA. For each ∧-semilattice S the assignment

S
λS - LS

is a ∧-semilattice morphism.

Proof. For convenience let λ = λS.
Trivially we have λ(>) = S which is the top of LS.
Consider any a, b ∈ S. Then for each z ∈ S we have

z ∈ λ(a ∧ b) ⇐⇒ z ≤ a ∧ b

⇐⇒ z ≤ a and z ≤ b

⇐⇒ z ∈ λ(a) and λ(b) ⇐⇒ z ∈ λ(a) ∩ λ(b)

and hence
λ(a ∧ b) = λ(a) ∩ λ(b)

to give the required result. �

We show that this assignment λS give the reflection of the ∧-semilattice S into Frm
in the sense of Definition 5.1. That notion requires a unique factorization of certain
morphisms f . This is where the notion of Definition 5.3 is useful.
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5.7 LEMMA. For each ∧-semilattice S the ∧-semilattice morphism

S
λS - LS

is Frm-epic, that is
g ◦ λS = h ◦ λS =⇒ g = h

holds for each parallel pair

LS
g -

h
- A

of Frm-arrows.

Proof. For convenience let λ = λS, and suppose

g ◦ λ = h ◦ λ

for some parallel pair g, h of Frm -arrows.
For each X ∈ LS we have

X =
⋃
{↓a | a ∈ X} =

⋃
{λ(a) | a ∈ X} =

⋃
λ→(X)

and hence

g(X) =
∨
{(g ◦ λ)(a) | a ∈ X}

∨
{(g ◦ λ)(a) | a ∈ X} = h(X)

since both g and h are
∨

-morphisms. The required result is now immediate. �

Notice that we have actually proved a little more here. For each poset S the assignment
λS is Sup-epic, but we don’t need that strengthening.

This result gives us ‘one half’ of the main result of this subsection.

5.8 THEOREM. For each ∧-semilattice S the morphism

S
λS - LS

provides a reflection of S into Frm .

Proof. For convenience let λ = λS.
We know that LS is a frame and, by Lemma 5.6, the assignment λ is a ∧-semilattice

morphism. Consider any ∧-semilattice morphism

S
f - A

to a frame A. By Lemma 5.7 there is at most one frame morphism

LS
f ]

- A

such that f = f ] ◦ λ. Thus it suffices to show that there is at least one such morphism.
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For each X ∈ LS let

f ](X) =
∨

f→(X) =
∨
{f(x) | x ∈ X}

to obtain a function f ] : LS - A. For each s ∈ S we have

f(s) ∈ f→(↓s) ⊆ ↓f(s)

so that
(f ] ◦ λ)(s) = f ](↓s) =

∨
f→(↓s) = f(s)

to show that f = f ] ◦ λ (as functions).
It remains to show that f ] is a frame morphism.
To show that f ] passes across arbitrary suprema consider any X ⊆ LS. We have

f ](
⋃
X ) =

∨
f→(

⋃
X ) =

∨
{f(x) | x ∈

⋃
X}∨

f ]→(X ) =
∨
{f ](X) |X ∈ X} =

∨
{f(x) | x ∈ X ∈ X}

and hence
f ](

⋃
X ) =

∨
f ]→(X )

as required.
Note that this property ensures that f ] is monotone.
To show that f ] passes across binary infema consider any X, Y ∈ LS. Since f ] is

monotone we have
f ](X ∩ Y ) ⊆ f ](X) ∧ f ](Y )

so out final job is to check the converse comparison.
We have

f ](X)∧f ](Y ) =
(∨
{f(x) | x ∈ X}

)
∧

(∨
{f(y) | y ∈ Y }

)
=

∨
{f(x)∧f(y) | x ∈ X, y ∈ Y }

where the second equality follows by two uses of FDL (in the frame A). Also

x ∈ X, y ∈ Y =⇒ x ∧ Y ∈ X ∩ Y

so that, since f is a ∧-semilattice morphism,

f ](X) ∧ f ](Y ) =
∨
{f(x ∧ y) | x ∈ X, y ∈ Y } ≤

∨
{f(z) | z ∈ X,∩Y } = f ](X ∩ Y )

as required. �

Although not directly relevant here, it is worth observing that almost the same con-
struction and proof produces a reflection from Pos into Sup. You should work through
the details of this to see exactly where the frame theoretic properties are used in the proof
of Theorem 5.8.
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5.3 Reflection from Dlt

Recall that a bounded lattice is a structure

(D,≤,∧,>,∨,⊥)

where (D,≤) is a poset with top > and bottom ⊥, and where ∧ and ∨ are binary meet
and join operations on D, that is

x ∨ y ≤ z ⇐⇒ x ≤ z and y ≤ z

z ≤ x ∧ y ⇐⇒ z ≤ x and z ≤ y

for x, y, z ∈ D. Such a lattice is distributive if both

(∀a, x, y ∈ D)[a ∨ (x ∧ y = (a ∨ x) ∧ (a ∨ y)]

(∀a, x, y ∈ D)[a ∧ (x ∨ y = (a ∧ x) ∨ (a ∧ y)]

hold. In fact, only one of these identities is necessary since each implies the other.
A d-lattice is a bounded distributive lattice. These are the objects of Dlt .
An arrow

D
f - E

of Dlt is a lattice morphism from D to E. Thus

f(>) = > f(⊥) = ⊥
f(x ∧ y) = f(x) ∧ f(y) f(x ∨ y) = f(x) ∨ f(y)

for each x, y ∈ D. Such a morphism is automatically monotone.
This category Dlt sits between two forgetful functors

Meet � Dlt � Frm

where each forgets both structure and property in various degrees. In this subsection we
look at a reflection for the right hand functor.

5.9 DEFINITION. Let D be a d-lattice.
An ideal of D is a non-empty lower section X ∈ LD such that

x, y ∈ X −→ x ∨ y ∈ X

for all x, y ∈ D.
Let ID be the poset of all ideals of D under inclusion. �

We will show that

D - ID

is the object assignment of the reflection functor from Dlt to Frm . Thus our first job is
to expose the frame structure of ID.

Almost trivially, for each family X ⊆ ID the intersection
⋂
X is an ideal. Thus the

poset ID has all infima and so is a complete lattice. Observe that the singleton {⊥} is
an ideal of D, and so is the bottom of ID. Similarly, D is an ideal, and so is the top of
ID.

Since ID has all infima, it also has all suprema. However, these are not just unions.
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5.10 LEMMA. Let D be a d-lattice, let X ⊆ ID, and let Y ⊆ D be given by

y ∈ Y ⇐⇒ (∃x1, . . . , xm ∈
⋃
X )[y ≤ x1 ∨ · · · ∨ xm]

for y ∈ D. Then Y is an ideal and is the supremum of X in ID.

Proof. Trivially, Y is a non-empty lower section of D. Given y, z ∈ Y we have

y ≤ x1 ∨ · · · ∨ xm z ≤ xm+1 ∨ · · · ∨ xn

for x1, . . . , xn ∈
⋃
X . But now

y ∨ z ≤ x1 ∨ · · · ∨ xn

to show that y ∨ z ∈ Y . Thus Y is an ideal of D.
Trivially,

⋃
X ⊆ Y , so that

∨
X ⊆ Y . We need the converse inclusion.

Consider any ideal Z ∈ ID with
⋃
X ⊆ Z. Consider any y ∈ Y . We have

y ≤ x1 ∨ · · · ∨ xm

where
x1, . . . , xm ∈

⋃
X ⊆ Y

so that
y ≤ x1 ∨ · · · ∨ xm ∈ Z

and hence y ∈ Z. Thus Y ⊆ Z and hence Y =
∨
X . �

Of course, we need ID to be a bit more than a complete lattice.

5.11 LEMMA. For each d-lattice D the poset ID is a frame.

Proof. We know that ID is a complete lattice, so it suffices to show

X ∩
∨
Y =

∨
{X ∩ Y | Y ∈ Y}

for X ∈ ID and Y ⊆ ID. The inclusion ‘⊇’ is trivial, so it remains to verify the converse
inclusion.

Consider
z ∈ X ∩

∨
Y

so that z ∈ X and
z ≤ y1 ∨ · · · ∨ ym

where yi ∈ Yi ∈ Y for 1 ≤ i ≤ m. Since D is distributive we have

z = z ∧ (y1 ∨ · · · ∨ ym) = (z ∧ y1) ∨ · · · ∨ (z ∧ ym)

where z ∧ yi ∈ X ∩ Yi for 1 ≤ i ≤ m. This shows that

z ∈
∨
{X ∩ Y | Y ∈ Y}
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as required. �

There is another method of showing that ID is a frame, namely by exhibiting the
implication operation on ID. You will find it instructive to work out the details of this
proof.

For each a ∈ D (a d-lattice) the principal lower section

ηD(a) = ↓a

is an ideal of D, that is η(a) ∈ ID.

5.12 LEMMA. For each d-lattice D the assignment

D
ηD - ID

is a lattice morphism.

Proof. For convenience let η = ηD.
Since

η(>) = ↓> = D η(⊥) = ↓⊥{⊥}
it suffices to show

η(a ∧ b) = η(a) ∩ η(b) η(a ∨ b) = η(a) ∨ η(b)

for a, b ∈ D. The left hand equality is immediate, as is the inclusion

η(a ∨ b) ⊆ η(a) ∨ η(b)

so it suffices to check the converse of this.
Consider z ∈ η(a) ∨ η(b), that is

z ≤ x ∨ y

for some x ≤ a and y ≤ b. Then

z ≤ x ∨ y ≤ a ∨ b

so that z ∈ η(a ∨ b), to give the required result. �

We will show that the lattice morphism

D
ηD - ID

provides a reflection of the d-lattice D into Frm . The proof of this will follow that of
Theorem 5.8, so that first thing we need is an analogue of Lemma 5.7 The only minor
problem is that suprema in ID need not be unions.
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5.13 LEMMA. For each d-lattice D the lattice morphism

D
ηD - ID

is Frm-epic, that is
g ◦ ηS = h ◦ ηS =⇒ g = h

holds for each parallel pair

ID
g -

h
- A

of Frm-arrows.

Proof. For convenience let η = ηS.
Consider X ∈ ID and let

X = η→(X) = {↓x | x ∈ X}

to obtain X ⊆ ID with X =
⋃
X . Consider z ∈

∨
X (as computed in ID). Then

z ≤ x1 ∨ · · · ∨ xm = y

for some x1, . . . , xm ∈ X. But now y ∈ X (since X is an ideal) so that z ∈ ↓y ∈ X . This
shows that ∨

X =
⋃
X = X

which helps us out of the minor problem
Suppose

g ◦ η = h ◦ η

for some parallel pair g, h of Frm -arrows. Then, since both g and h are
∨

-morphisms we
have

g(X) = g(
∨
X ) =

∨
(g ◦ η)→(X) =

∨
(h ◦ η)→(X) = h(

∨
X ) = h(X)

to give the required result. �

With this we can obtain the reflection result. This is the analogue of Theorem 5.8,
and much of the proof is exactly the same.

5.14 THEOREM. For each d-lattice D the morphism

D
ηD - ID

provides a reflection of D into Frm .

Proof. For convenience let η = ηD.
We know that ID is a frame and, by Lemma 5.12, the assignment η is a lattice

morphism. Consider any lattice morphism

D
f - A
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to a frame A. By Lemma 5.13 there is at most one frame morphism

ID
f ]

- A

such that f = f ] ◦ η. Thus it suffices to show that there is at least one such morphism.
For each X ∈ ID let

f ](X) =
∨

f→(X) =
∨
{f(x) | x ∈ X}

to obtain a function f ] : LS - A. As in the proof of Theorem 5.8 it suffices to show
that f ] is a frame morphism. The proof that f ] passes across binary meets is exactly
the same as in the proof of Theorem 5.8. Thus it suffices to show that f ] passes across
arbitrary suprema.

Consider X ⊆ ID. We must show that

LHS = f ](
∨
X ) RHS =

∨
f ]→(X )

are equal. However, we have

LHS =
∨

f→(
∨
X ) =

∨
{f(y) | y ∈

∨
X}

RHS =
∨
{f ](X) |X ∈ X ) =

∨
{f(y) | x ∈ X ∈

∨
X}

so that RHS ≤ LHS is immediate. Conversely, consider any y ∈
∨
X . We have

y ≤ x1 ∨ · · · ∨ xm

where xi ∈ Xi ∈ X for 1 ≤ i ≤ m. Thus, since f is a lattice morphism, we have

f(y) ≤ f(x1 ∨ · · · ∨ xm) = f(x1) ∨ · · · ∨ f(xm) ≤ RHS

and hence
LHS =

∨
{f(y) | y ∈

∨
X} ≤ RHS

as required. �

This deals with the reflection from Dlt to Frm . Before we move on it is worth
making a few remarks about the reflection from Meet to Dlt . This can be set up using
a construction very simular to that used in Subsection 5.2. The main difference is that
the target here is an object with only finitary suprema, whereas there it has arbitarry
suprema. It is an instructive exercise to worh out how this is done, and to check that the
composite of the two reflections

Meet - Dlt - Frm

is essentially the same as that of Subsection 5.2.
We conclude this subsection with a result which at fist sight looks to be little more

than an interesting curiosity. However, it is more than that.
Consider a frame A. This is a d-lattice, and so has its own associated frame Id A of

ideals. We have a d-lattice embedding

A
ηA - Id A
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but in general this is not a frame embedding.
Each ideal I of A is a subset of A, and so has a supremum

∨
I in A. This gives us an

assignment

Id A
ζA - A

I -
∨

I

where
ζA ◦ ηA = idA

(since each value of ηA is a principal ideal).

5.15 THEOREM. For each frame A he assignment

Id A
ζA - A

is a frame morphism.

Proof. For convenience let ζ = ζA.
Trivially we have

ζ({⊥}) = ⊥ sζ(A) = >
and ζ is monotone. Thus it suiffices to show

ζ(I) ∧ ζ(J) ≤ ζ(I ∩ J) ζ(
∨
J ) ≤

∨
{ζ(J) | J ∈ J }

for each I, J ∈ Id A and J ⊆ Id A.
For the left hand comparison we have

ζ(I) ∧ ζ(J) = (
∨

I) ∧ (
∨

J) =
∨
{a ∧ b | a ∈ I, b ∈ J} ≤

∨
(I ∩ J) = ζ(I ∩ J)

where the second, crucial, equality follows by two uses of FDL.
For the right hand comparison consider any b ∈

∨
J . We have

b ≤ a1 ∨ · · ·am

for some selection
a1 ∈ J1 ∈ J , . . . , am ∈ Jm ∈ J

of ideals from J and elements from these ideals. For each such b we have

b ≤
∨

J1 ∨ · · · ∨
∨

Jm ≤
∨
J

to give the rquired result. �

Sometimes the map ζA is called the structure morphism of A.

5.4 Reflection from Sup

When I was preparing these notes I set up the various sections and subsections as listed
in the Contents. When I came to write this subsection I realized that I didn’t know how
to reflect a

∨
-semilattice into a frame. Thus this is a very short subsection.

If I find out more information on this aspect, then I will let you know.
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5.5 Reflection from Set

Each frame can be viewed as a set to give us a forgetful functor

Set � Frm

to the category of sets and functions. In this subsection we look at the left adjoint

Set
Φ - Frm

to this forgetful functor. Thus to each set X we attach a frame ΦX which is often called
the free frame generated by X. This last notion is a bit finicky to make precise, but it is
intuitively clear what the phrase means.

We give three versions of the reflector Φ.
In Block 5.5.1 we show that Φ can be obtained as the composite of two functors, each

of which is a reflector. The two components are easy to describe, and one of them is the
reflector of Subsection 5.3. The required universal property of Φ is an easy consequence
of the corresponding properties of the two components. However, sometimes we need to
get inside Φ, and this particular description does help us do that.

In Block 5.5.2 we give a direct construction of Φ, and verify the required properties
by direct calculation. This construction is essentially the same as that of Block 5.5.1
but with most of the categorical aspects stripped away. There is nothing wrong with the
construction, but it can leave you a bit disappointed. It doesn’t really explain why the
reflection exists.

In Block 5.5.3 we give another direct construction of Φ which really gets to the heart
of the matter. Most of the required verifications are simple, one line, affairs. And right
in the middle there is a simple result which, as we will see, makes the whole construction
work. However, it has to be said that at this stage the whole story can not be told. There
are no gaps in the proof, but there is other relevant information that is not given, because
we don’t have the background material. That will be done in [5].

5.5.1 A 2-step frame reflection

For the first construction of the reflector

Set
Φ - Frm

we consider the two forgetful functors

Set � Meet � Frm

where Meet is the category of ∧-semilattices. By Subsection 5.3 we know the right hand
functor has a reflector, and in this subsection we show that the left hand functor has a
reflector. Thus we obtain a pair of functors

Set
M- Meet

L - Frm

together with natural assignments

X
µX - MX M

λM - LM
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for each set X and each ∧-semilattice M . These two assignments have certain universal
properties. We wish to show that

Φ = L ◦M
is the required reflector. But this is a simple peace of abstract nonsense.

5.16 THEOREM. For each set X the assignment

X
ηX = λMX ◦ µX- ΦX

reflects X into a frame.

Proof. We know that
ΦX = L(MX)

is a frame, so it suffices to verify the required universal property.
To this end consider any function

X
f - A

from X to a frame A. Since A is a ∧-semillatice we obtain a commuting triangle

X
f - A

MX

f \

-

µX -

for some unique ∧-semilattice morphism f \. Using this we obtain a second commuting
triangle

X
f - A

MX
λMX

-

f \
-

µX -

ΦX

f ]

�

for some unique frame morphism f ]. This, mor or less, completes the proof. �

Our problem now is to produce the reflector M. This is just as easy to describe,
but there is a little twist that can cause a hiccough. (The same method we use will also
produce a reflection from the category of posets into Meet . It is instructive to go through
that construction because the role of the twist becomes more obvious.)

Let X be any set and let
Pcof X

be the poset of cofinite subsets of X. These are the subsets of the form

F ′ = X − F
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for finite F ⊆ X. Since
F ′ ∩G′ = (F ∪G)′

we see that Pcof X is a ∧-semilattice with top X = ∅′. We show that the assignment

X
µX - Pcof X

x - {x}′

reflects X into Meet .
We deal with the required uniqueness in the standard way.

5.17 LEMMA. For each set X the assignment

X
µX - Pcof X

is Meet-epic.

Proof. For convenience let µ = µX .
Consider any parallel pair

Pcof X
g -

h
- M

of functions to a ∧-semilattice, and suppose g ◦ µ = h ◦ µ. Consider an arbitrary member
F ′ of Pcof X. We have

F =
⋃
{{x} | x ∈ F}

and this is a union of finitely many singletons. Thus

F ′ =
⋂
{{x}′ | x ∈ F} =

⋂
{µ(x) | x ∈ F}

and this is an intersection of finitely many singletons. The presevation property of g and
h now gives

g(F ′) = g(
⋂
{µ(x) | x ∈ F}) =

∧
{g(µ(x)) | x ∈ F}

h(F ′) = h(
⋂
{µ(x) | x ∈ F}) =

∧
{h(µ(x)) | x ∈ F}

which leads to the required result. �

The whole proof is just as easy.

5.18 THEOREM. For each function

X
f - M

from a set X to a ∧-semilattice M , there is a unique Meet morphism

Pcof X
f ]

- M
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such that

X
f - M

Pcof X
f ]

-

µX
-

commutes. This morphism f ] is given by

f ](F ′) =
∧

f→(F )

for each finite F ⊆ X.

Proof. Much of this is routine. The only real problem is to show that f ] is a ∧-
morphism, that is

f ](F ′ ∩G′) = f ](F ) ∧ f ](G′)

for finite F, G ⊆ S. But

f ](F ′ ∩G′) = f ]((F ∪G)′) =
∧
{f(z) | z ∈ F ∪G}

and
f ](F ′) ∧ f ](G′) =

∧
{f(x) | x ∈ F} ∧

∧
{f(y) | y ∈ G}

so the required equality is immediate. �

These two functors

Set
M- Meet

L - Frm

combine to produce the reflector of Set into Frm . Let’s see what this does.
Consider any set X. At the first step we take the semilattice

Pcof X

of cofinite subsets of S. We then take the frame of lower sections of this poset. Thus a
typical member of the constructed frame has the form

{F ′ |F ∈ F}

where F is certain family of finite subsets of X. Because we want to obtain a lower section
of Pcof X, this family F must be upwards closed, that is we require

F ∈ F =⇒ G ∈ F

for all finite subsets F ⊆ G of X.
In short, for each set X the reflection of x into Frm is carried by the upwards closed

subfamilies of PfinX, the family of finite subsets of X .
This is the carrier of the required reflection of X. I will leave you to sort out the carried

lattice theoretic attributes for yourself. Perhaps you can already see that this description
is a bit convoluted, and not very helpful if we have to do any particular calculations.
Luckily, there is a neater description of the reflector.
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5.5.2 A 1-step frame reflection

In this and the next block we describe a 1-step reflection functor

Set
Φ - Frm

which does not go via an intermediate category. The two blocks both produce the same
functor. The difference is that in this block we give a more ‘elementary’ description of
the functor and get involved in one or two messy details, whereas in the next block we
try to expose the underlying categorical reasons for the existence of the reflector. You my
prefer to skip this block and go straight to the next one.

Recall that sierpinski space

2 = {0, 1} O2 = {∅, {1},2}

is the two point space with one point open and the other not. It is convenient to label
these points as indicated. In other words, sierpinski space is the two element poset 0 < 1
furnished with the Alexandroff topology.

For each set X we have the set
Set [X,2]

of function
p : S - 2

from X to 2. Sometimes these set of functions is written as X2 or as 2X
. Later you will

see why we have written it as Set [X,2]. Notice that the members p of Set [X,2] are just
the characteristic functions of subsets of X. For that reason we refer to each such p as a
Set -character of X, or just character when there is little chance of confusion. (Later we
will meet Alg -characters for several categories Alg of algebras.)

Since 2 is a topological space we can use the product topology to obtain a topology

ΦX = OSet [X,2]

on this set of characters. In due course we show that ΦX is the free frame generated by
X. To do that we need a bit of notation.

We work with

finite subsets of X families of finite subsets of X

F ∈ PfinX F ⊆ PfinX

and it is convenient to use this fount convention to help us distinguish between these.

5.19 DEFINITION. Let X be an arbitrary set.
(a) For each x ∈ F we let

p ∈ η(x) ⇐⇒ p(x) = 1

for p ∈ Set [X,2] to produce a subset η(x) of Set [X,2].
(b) For each F ∈ PfinX we let

η(F ) =
⋂
{η(x) | x ∈ F}
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to produce a subset η(F ) of Set [X,2].
(c) For each F ⊆ PfinX we let

η〈F〉 =
⋃
{η(F ) |F ∈ F}

to produce a subset η〈F〉 of Set [X,2]. �

In other words, η(x) is a typical subbasic open set of Set [X,2]. Similarly, η(F ) is a
typical basic open set of Set [X,2], and η〈F〉 is a typical open set of Set [X,2]. Observe
that

η(F ) ∩ η(G) = η(F ∪G)

for F, G ∈ PfinX.
We will show that the assignment

X
η - ΦX = OSet [X,2]

reflects S into Frm . Strictly speaking, we should have written ηX for η, to indicate its
parent set. We don’t need to do that in this block, but we will in the next block.

Reflection are concerned with unique factorization of certain morphisms. To achieve
that uniqueness here we prove an analogue of Lemmas 5.7 and 5.13

5.20 LEMMA. For each set X the function

X
η - ΦX

is Frm-epic, that is
g ◦ η = h ◦ η =⇒ g = h

holds for each parallel pair

ΦX
g -

h
- A

of Frm-arrows.

Proof. Suppose
g ◦ η = h ◦ η

for a pair of frame morphisms g, h, as indicate. In other words, we have

g(W ) = h(W )

for each subbasic open subset W ∈ OSet [X,2], since each such W has the form η(x) for
some x ∈ X.

Consider any basic open set V of OSet [X,2]. This has the form η(F ) for some
F ∈ PfinX, and so is a finite intersection of subbasic open sets. Thus

g(V ) = h(V )

since both g and h are ∧-semilattice morphisms.
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Consider any open set U of OSet [X,2]. This has the form η〈F〉 for some F ⊆ PfinX,
and so is a union of basic open sets. Thus

g(U) = h(U)

since both g and h are
∨

-morphisms. �

Now come the substantial part of the proof.
Given a function

X
f - A

to some frame A, we must produce a factorization

X
f - A

ΦX
f ]

-

η -

for some frame morphism f ]. By Lemma 5.20 there is at most one such morphism, and
we have to exhibit it. What can it be? Consider any U ∈ ΦX. This has the form

U = η〈F〉 =
⋃
{η(F ) |F ∈ F}

for some F ⊆ PfinX. Thus

f ](U) =
∨
{f ](η(F )) |F ∈ F}

since f ] passes across suprema. For each F ∈ F we have

F = {x1, . . . , xm}

(for some x1, . . . , xm ∈ S), and then

η(F ) = η(x1) ∩ · · · ∩ η(xm)

to give
f ](η(F )) = (f ] ◦ η)(x1) ∧ · · · ∧ (f ] ◦ η)(xm)

since f ] passes across meets. But
f ] ◦ η = f

so that
f ](η(F )) =

∧
f→(F )

and hence
(]) if U = η〈F〉 then f ](U) =

∨
{
∧

f→(F ) |F ∈ F}
which appears to be an explicit description of f ].

We would like to use (]) as a definition of this fill-in. Unfortunately, this description
depends on the family F with U = η〈F〉. For a particular U ∈ OSet [X,2] there may be
many such families F . Thus before we can use (]) as a definition we must show that the
right hand side is independent of the choice of X . To achieve that we prove something
slightly stronger.
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5.21 LEMMA. For the situation described above, suppose

η(F ) ⊆ η〈G〉

for F ∈ Pfinx and G ⊆ PfinX. Then∧
f→(F ) ≤

∨
{
∧

f→(G) |G ∈ G}

holds.

Proof. For convenience let

a =
∧

f→(F ) b =
∨
{
∧

f→(G) |G ∈ G}

so we require a ≤ b.
Consider the function

p : S - 2

where
p(z) = 1 ⇐⇒ a ≤ f(z)

for z ∈ X. For each x ∈ F we have a ≤ f(x) and hence p(x) = 1. Thus

p ∈ η(F ) ⊆ η〈G〉

so that p ∈ η(Y ) for some Y ∈ Y . But now p(y) = 1 and hence a ≤ f(y) for each y ∈ G,
to give

a ≤
∧

f→(G) ≤ b

for the required result. �

A particular case of this shows that the value f ](U) given by (]) is independent of the
representation of U .

5.22 COROLLARY. For each F ,G ⊆ PfinX, if

η〈F〉 = η〈G〉

then ∨
{
∧

f→(F ) |F ∈ F} =
∨
{
∧

f→(G) |G ∈ G}
holds.

This result shows that (]) is a well-defined description of a function

f ] : ΦX - A

from the ‘free’ topology to the target frame. Our job now is to show that this function
has all the required properties. We do this bit by bit.

5.23 LEMMA. The function f ] is monotone.
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Proof. Consider open sets U ⊆ V of Set [X,2]. Let

U = η〈F〉 V = η〈G〉

for F ,G ∈ Pfinx. For each F ∈ F we have

η(F ) ⊆ U ⊆ V = η〈G〉

and hence ∧
f→(F ) ≤

∨
{
∧

f→(G) |G ∈ G} = f ](V )

by Lemma 5.21. But now

f ](U) =
∨
{
∧

f→(F ) |F ∈ F} ≤ f ](V )

to give the required result. �

Next we look at half the required morphism properties.

5.24 LEMMA. The function f ] is a ∧-morphism.

Proof. The top T of ΦX is the whole space Set [X,2]. To show

f ](T ) = >A

we need to locate F ⊆ PfinX with T = η〈F〉. We show that

F = {∅}

will do where ∅ ⊆ PfinX. We have

η(∅) =
⋂
∅ = X

for remember that this intersection is computed in ΦX. Thus

η〈{∅}〉 =
⋃
{η(F ) |F ∈ {∅}} = η(∅) = X

as we claimed. Similarly since f→(∅) is empty we have∧
f→(∅) = >A

for remember that this infimum is computed in A. Thus

f ](T ) = sup{
∧

f→(F ) |F ∈ {∅}} =
∧

f→(∅) = >A

to show that f ] preserves top.
For the more substantial requirement consider U, V ∈ ΦX and let

U = η〈F〉 V = η〈G〉

for F ,G ⊆ PfinX. Let H be the family of all sets F ∪G for F ∈ F and G ∈ G. We have

U ∩ V =
⋃
{η(F ) |F ∈ F} ∩

⋃
{η(G) |G ∈ G}

=
⋃
{η(F ) ∩ η(G) |F ∈ F , G ∈ G}

=
⋃
{η(F ∪G) |F ∈ F , G ∈ G}

=
⋃
{η(H) |H ∈ H} = η〈H〉
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to give a representation of U ∩ V . Remember also that∧
f→(F ) ∧

∧
f→(G) =

∧
f→(F ∪H)

for arbitrary X, Y . With these we have

f ](U) =
∨
{
∧

f→(F ) |F ∈ F}
f ](V ) =

∨
{
∧

f→(G) |G ∈ G}
f ](U ∩ V ) =

∨
{
∧

f→(H) |H ∈ H}

so that two uses of FDL (on A) gives

f ](U) ∧ f ](V ) =
∨
{
∧

f→(F ) |F ∈ F} ∧
∨
{
∧

f→(G) |G ∈ G}
=

∨
{
∧

f→(F ) ∧
∧

f→(G) |F ∈ F , G ∈ G}
=

∨
{
∧

f→(F ∪G) |F ∈ F , G ∈ G}
=

∨
{
∧

f→(H) |H ∈ H} = f ](U ∩ V )

as required. �

There is just one more step to go.

5.25 LEMMA. The function f ] is a frame morphism.

Proof. By Lemmas 5.23 and 5.24 it suffices to show that f ] is a
∨

-morphism.
The bottom of ΦX is the empty set ∅ (as a subset of X). To show

f ](∅) = ⊥A

we need to locate F ⊆ PfinX with ∅ = η〈F〉. In fact F = ∅ will do since

η〈∅〉 =
⋃
{η(F ) |F ∈ ∅} =

⋃
∅ = ∅

for remember that this union is computed in ΦX. Similarly since f→(∅) is empty we have∧
f→(∅) = >A

for remember that this infimum is computed in A. Using this we have

f ](∅) =
∨
{
∧

f→(F ) |F ∈ ∅} =
∨
∅ = ⊥A

for remember that this supremum is computed in PX.
For the more substantial requirement it suffices to show that

f ](
⋃
U) ≤ {f ](U) |U ∈ U}

for U ⊆ ΦS.
Consider such a U . We may index this as

U = {Ui | i ∈ I}
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for some index set I. For each index i let

Ui = η〈Fi〉

for some Fi ⊆ PfinX. Let
F =

⋃
{Fi | i ∈ I}

to obtain another F ⊆ PfinX. We have⋃
U =

⋃
{Ui | i ∈ I}

=
⋃
{η〈Fi〉 | i ∈ I}

=
⋃
{
⋃
{η(F ) |F ∈ Fi} | i ∈ I}

=
⋃
{η(F ) |F ∈ Fi, i ∈ I}

=
⋃
{η(F ) |F ∈ F} = η〈X 〉

to give a representation of
⋃
U . Using this we have

f ](Ui) =
∨
{
∧

f→(F ) |F ∈ Fi}

and
f ](

⋃
U) =

∨
{
∧

f→(F ) |F ∈ F}
where this second supremum can be partitioned using I. This gives

f ](
⋃
U) =

∨
{f ](Ui) | i ∈ I}

as required �

This almost completes the proof of the following.

5.26 THEOREM. For each function

X
f - A

from a set X to a frame A, there is a unique frame morphism

ΦX
f ]

- A

such that

X
f - A

ΦX
f ]

-

η -

commutes. This morphism f ] is given by (]).
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Proof. The only thing left to do is to check that f ] ◦ η = f . To this end consider any
x ∈ X, let

F = {x} F = {F}
so that

η(F ) = η(x) η〈F〉 = η(F ) = η(x)

and hence
(f ] ◦ η)(x) =

∨
{
∧

f→(F ) |F ∈ F} = f(x)

as required. �

The fact that this reflection ΦX is the topology on a rather canonical space Set [X,2]
associated with the set X will be useful later.

5.5.3 A better 1-step relection

The idea of the previous block seems quite simple, but some of the calculations do tend
to get to obscure what is going on. There is a cleaner account of the construction using
various functorial properties. At the heart of the construction is the relationship between
a frame and its spectrum as a d-lattice. That material is developed in [5]. Nevertheless,
with a bit of give and take, it is possible to give a version of this cleaner account.

Consider a frame A. We may forget all of its structure and view it as a set to produce
a topology ΦA and an assignment

A
ηA - ΦA

which is just a function. We may also view A as a d-lattice and so obtain the associated
frame Id A of ideals of A.

5.27 THEOREM. For each frame A there is a unique frame morphism

ΦA
ιA - Id A

and furthermore
(ιA ◦ ηA)(a) = ↓a

for each a ∈ A.

We will prove this result at the end of this block. Before that let’s see how it can be
used to produce the required reflection.

We use a slight modification of ιA.
By Theorem 5.15 we have a frame morphism

Id A
ζA - A

I -
∨

I

which sends each ideal I of A to its supremum in A. In particular, if I is principal then
this assignment picks out the principal generator. Let

ΦA
δA - A
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be the composite

ΦA
ιA - Id A

ζA - A

of the two frame morphism. We have

δA ◦ ηA = idA

since each value of ιA ◦ ηA is principal.
Consider a function

X
f - A

from a set X to a frame A. How might we produce a factorization

f = f ] ◦ ηX

of f where f ] is a frame morphism?
The function induces a function

Set [X,2] � φ
Set [A,2]

p ◦ f � p

in the opposite direction. We easily check that φ is continuous with respect to

ΦX ΦA

the two carried topologies. In fact

φ←(ηX(x)) = ηA(f(x))

for each x ∈ X. Thus we obtain a commuting square

X
f - A

ΦX

ηX

?

φ←
- ΦA

ηA

?

of functions where φ← is a frame morphism. With

f ] = δA ◦ φ←

we have
f ] ◦ ηX = δ ◦ φ← ◦ ηX = δ ◦ ηA ◦ f = f

for the required factorization.
This shows that the morphism ιA is the heart of the reflection property. Of course,

since ηA is Frm -epic, there is at most one such morphism ιA. Thus to prove Theorem
5.27 it suffices to exhibit one such morphism.
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We now deal entirely with the frame A. Thus we may drop various decorations and
write

η = ηA ι = ιA

for the known function and the required morphism.
Let

T = Set [A,2] S = Dlt [A,2]

so that T is the set of functions which carries the topology

ΦA = OT

and S is a certain subsets of T . In fact, S is the set of Dlt -characters of A, the set of
those functions

p : A - 2

which happen to be Dlt -morphisms, that is

p(>) = 1 p(⊥) = 0

p(a ∧ b) = p(x) ∧ p(y) p(a ∨ b) = p(a) ∨ p(b)

for each a, b ∈ A.
We may topologize S as a subspace of T , and then S is nothing more than

spec A

he lattice spectrum of A. In [5] we will obtain a better understanding of this space, and
that will the following construction quite obvious.

The secret ingredient of the Stone representation of a lattice is a certain choice principle
used as a separation technique. Here is the version we need.

5.28 Separation Principle. Let a ∈ A be an element and let I ∈ Id A be an ideal of the
frame A, and suppose a /∈ I. Then

p(a) = 1 p→(I) = {0}

for some p ∈ S = Dlt [A,2].

We can write down the definition of the required morphism ι immediately.

5.29 DEFINITION. For each U ∈ OT = ΦA let ι(U) be the subset of A given by

a ∈ ι(U) ⇐⇒ η(a) ∩ S ⊆ U

(for a ∈ A).

Of course, proving that this does the required job takes a little longer.

5.30 LEMMA. For each U ∈ OT the subset ι(U) ⊆ A is an ideal of A.
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Proof. Since
η(⊥) ∩ S = ∅

we have ⊥ ∈ ι(U), and trivially ι(U) is a lower section of A.
Consider a, b ∈ ι(U). Thus

η(a) ∩ S ⊆ U η(b) ∩ S ⊆ U

and we require a ∨ b ∈ ι(U). But, for

p ∈ η(a ∨ b) ∩ S

we have
p(a) ∨ p(b) = p(a ∨ b) = 1

so that
p(a) = 1 or p(b) = 1

and hence
p ∈ η(a) ∩ S ⊆ U or p ∈ η(b) ∩ S ⊆ U

to give the required result. �

trivially we have
ι(∅) = ∅ ι(>) = A

and ι is monotone. Also, a few moment’s thought gives

ι(U) ∩ ι(V ) = ι(U ∩ V )

for U, V ∈ OT . Thus we have the following.

5.31 LEMMA. The assignment

OT
ι - Id A

is a ∧-semilattice morphism.

Most of our work is concerned with the interaction of ι with unions in T . For that we
need a preliminary observation.

5.32 LEMMA. We have

U ∩ S =
⋃
{η(a) ∩ S | a ∈ ι(U)}

for each U ∈ OT .

Proof. The inclusion ‘⊇’ is trivial, by the construction of ι(U). Thus it suffices to
verify the converse inclusion.

Consider any p ∈ U ∩ S. Since P ∈ U we have

p ∈ η(a1) ∩ · · · ∩ η(am) ⊆ U
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for some a1, . . . , am ∈ A. Let
a = a1 ∧ · · · ∧ am

so that
q(a) = q(a1) ∧ · · · ∧ q(am)

for each q ∈ S. This gives

η(a) ∩ S = η(a1) ∩ · · · ∩ η(am) ∩ S ⊆ U

so that a ∈ ι(U), and p ∈ η(a) ∩ S, for the required result. �

By construction, we know that

{η(a) | a ∈ A}

is a subbase for the topology OT on T . This last result shows that

{η(a) ∩ S | a ∈ A}

is a base for the topology OS on the subspace S.
Consider any family U ⊆ OT . This gives us a family

{ι(U) |U ∈ U}

of ideals of A, and we may form the supremum∨
{ι(U) |U ∈ U}

in ID. How does this relate to ι(
⋃
U)? To answer that we need the Separation Principle

5.28.

5.33 LEMMA. Consider U ⊆ OT , and set

J = ι(
⋃
U) I =

∨
{ι(U) |U ∈ U}

to obtain two ideals J and Iof A. Then J = I.

Proof. We have I ⊆ J since ι(·) is monotone.
For the converse, consider any a ∈ J and, by way of contradiction, suppose a ∈ I.

Then the Separation Principle 5.28 gives

p(a) = 1 p→(I) = {0}

for some p ∈ S. Since p(a) = 1 and a ∈ J , we have

p ∈ η(a) ∩ S ⊆
⋃
U

and hence p ∈ U for some U ∈ U , But now Lemma 5.32 gives

p ∈ U ∩ S =
⋃
{η(b) ∩ S | b ∈ ι(U)}
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and hence p(b) = 1 for some b ∈ I. This is the contradiction. �

With this we can quite quickly prove Theorem 5.27.

Proof of 5.27. Since the assignment η = ηA is Frm -epic, there is at most one such
morphism ι = ιA. Thus it suffices to show that the assignment ι constructed above is a
frame morphism.

By Lemma 5.31 it remains to show

ι(
⋃
U) ⊆

∨
{ι(U) |U ∈ U}

for U ⊆ ΦA. But this is nothing more then Lemma 5.33.
Finally, we require

(ι ◦ η)(a) = ↓a
for each a ∈ A. To show this observe that

b ∈ (ι ◦ η)(a) ⇐⇒ η(b) ∩ S ⊆ η(a)

and hence
b ≤ a =⇒ b ∈ (ι ◦ η)(a)

for each b ∈ A.
For the converse suppose b ∈ (ι ◦ η(a), that is

η(b) ∩ S ⊆ η(a)

by the construction of ι. If b � a then a use of the Separation Principle 5.28 gives some
p ∈ S with

p(b) = 1 p(a) = 0

which, as we have just seen, can not be. �

A close look at Lemma 5.33 show that it produces an isomorphism

OS ∼= Id A

and then ι is essentially just the restriction morphism from OT to OS. However, as I
said, the details of that are done in [5].
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Index

A list of notations
(·)′ – set theoretic complement, 4
(·)− – the closure operation

of a topological space, 4
(·)◦ – the interior operation

of a topological space, 4
(· ⊃ ·) – implication on a frame, 8
Aj – set of fixed elements, 25
CBA – a category of complete

boolean algebras, 7
Cba – a category of complete

boolean algebras, 7
Dlt – category of d-lattices, 45
Fine-epic, 41
Frm – category of frames, 2
Meet – category of ∧-semilattices, 41
OS – closeds of a topological space, 4
OS – opens of a topological space, 4
Set – category of sets, 20
Sup – category of

∨
-semilattices, 22

Top – category of topological spaces, 4
2 – the 2-element frame

or sierpinski space, 19∨
– as in

∨
-morphism, 22

¬ – complement in a boolean algebra, 5
¬ – negation on a frame, 12
[ · ] – spatially induced nucleus, 35
ua – a special nucleus on a frame, 33
va – a special nucleus on a frame, 33
wa – a special nucleus on a frame, 11, 33
f ∗ – left adjoint in a poset adjunction, 14
f← – inverse image across, 3
f→ – direct image across, 3
f∗ – right adjoint in a poset adjunction,

14

boolean algebra, 5
complement in, 5
complete, 5

Categories
CBA – complete boolean algebras

and complete morphisms, 7
Cba – complete boolean algebras

and boolean morphisms, 7

Dlt – d-lattices, 45
Frm – frames, 2
Meet – ∧-semilattices, 41
Set – sets, 20
Sup –

∨
-semilattices, 22

Top – topological spaces, 4
complemented element, 13
complete boolean algebra, 5

d-lattice, 45
dense element, 13
direct image across, 3

element of
complemented, 13
dense, 13
regular, 13

FDL – Frame Distributive Law, 2
fixed set in a frame, 31
frame, 2

category of, 2
distributive law, 2
element of

complemented, 13
dense, 13
regular, 13

fixed set in, 31
implication on, 8
morphism, 2
negation on, 12

implication
on a complete boolean algebra, 9
on a frame, 8
on a topology, 9

inverse image across, 3

kernel
of a

∨
-morphism, 28

of a frame morphism, 30

lower section, 42

negation
on a frame, 12
on a topology, 14
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nucleus, 30
spatially induced, 35

reflection in a category, 40
reflective in a category, 40
regular element, 13

sierpinski space, 19
spatially induced nucleus, 35

topological space, 4
notations used with, 4
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