Задача. Докажите неравенство

$$\det G \leqslant \prod_{i=1}^{n} g_{ii},$$

где $G = (g_{ij})_{i,j=1}^n$ — симметричная положительно определённая матрица.

1-Е РЕШЕНИЕ. Предварительно установим следующее интуитивно очевидное утверждение: в n-мерном евклидовом пространстве объём n-мерного параллелепипеда не превосходит произведения длин его рёбер.

Действительно, пусть $\Pi(a_1,\ldots,a_n)$ — данный параллелепипед. Тогда

$$\begin{aligned} \operatorname{Vol}_n\Pi(a_1,\dots,a_n) &= \\ &= \operatorname{Vol}_n\Pi(a_1,\dots,h_n) = \sqrt{\det\operatorname{Gram}\left(a_1,\dots,h_n\right)} = \\ &= |h_n|\sqrt{\det\operatorname{Gram}\left(a_1,\dots,a_{n-1}\right)} = |h_n|\operatorname{Vol}_{n-1}\Pi(a_1,\dots,a_{n-1}) \leqslant \\ &\leqslant |a_n|\operatorname{Vol}_{n-1}\Pi(a_1,\dots,a_{n-1}), \end{aligned}$$

где h_n — ортогональная составляющая a_n относительно подпространства $\langle a_1, \dots, a_{n-1} \rangle$.

В пространстве \mathbb{R}^n введём скалярное произведение $(x,y)_G$, задав его в базисе e_1,\ldots,e_n из единичных векторов матрицей G. Таким образом,

$$g_{ij} = (e_i, e_j)_G.$$

Поскольку матрица G является положительно определённой, пространство \mathbb{R}^n становится евклидовым. Теперь имеем

$$\det G = \operatorname{Vol}_n^2 \Pi(e_1, \dots, e_n) \leqslant \prod_{i=1}^n (e_i, e_i)_G = \prod_{i=1}^n g_{ii}.$$

2-Е РЕШЕНИЕ. Укажем способ найти такой базис a_1, \ldots, a_n пространства \mathbb{R}^n , что

$$g_{ij} = (a_i, a_j),$$

где (x,y) — стандартное скалярное произведение. Пусть e_1^*,\ldots,e_n^* — ортонормированный относительно скалярного произведения $(x,y)_G$ базис пространства \mathbb{R}^n . Рассмотрим линейное преобразование $\varphi:\mathbb{R}^n\to\mathbb{R}^n$, определяемое условием

$$\varphi(e_i) = e_i^*, \quad i = 1, \ldots, n.$$

Это отображение осуществляет изоморфизм между евклидовыми пространствами $(\mathbb{R}^n,(x,y))$ и $(\mathbb{R}^n,(x,y)_G)$. Теперь достаточно положить

$$a_i = \varphi^{-1}(e_i), \quad i = 1, \dots, n.$$
 (*)

В самом деле, имеем

$$(a_i, a_j) = (\varphi(a_i), \varphi(a_j))_G = (e_i, e_j)_G = g_{ij}.$$

Если T — матрица отображения φ в базисе e_1, \ldots, e_n (она же — матрица перехода от базиса e_1, \ldots, e_n к базису e_1^*, \ldots, e_n^*), то столбцы координат векторов (*) в базисе e_1, \ldots, e_n суть столбцы матрицы $A = T^{-1}$. Таким образом,

$$G = A^t A. \tag{**}$$

Отметим, что базис e_1^*,\ldots,e_n^* можно получить, применив процесс $(x,y)_G$ -ортогонализации к базису e_1,\ldots,e_n . В этом случае матрица T будет верхнетреугольной, при этом можно считать её диагональные элементы положительными. Матрица A будет обладать теми же свойствами. Равенство (**) называется разложением Холецкого симметричной положительно определённой матрицы G.

Пусть, например,

$$G = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}.$$

Тогда

$$T = \begin{pmatrix} \sqrt{6}/6 & \sqrt{39}/39 & -5\sqrt{13}/117 \\ 0 & \sqrt{39}/13 & -2\sqrt{13}/117 \\ 0 & 0 & \sqrt{13}/9 \end{pmatrix}, \quad A = \begin{pmatrix} \sqrt{6} & -\sqrt{6}/3 & \sqrt{6}/3 \\ 0 & \sqrt{39}/3 & 2\sqrt{39}/39 \\ 0 & 0 & 9\sqrt{13}/13 \end{pmatrix}.$$

Практически удобнее сразу находить элементы матрицы A, пользуясь следующими рекуррентными формулами для $j=1,\,\ldots,\,n$:

$$a_{jj} = \left(g_{jj} - \sum_{k=1}^{j-1} a_{kj}^2\right)^{1/2}, \quad a_{ij} = \frac{1}{a_{ii}} \left(g_{ij} - \sum_{k=1}^{i-1} a_{ki} a_{kj}\right),$$

$$i = 1, \dots, j-1.$$

3-Е РЕШЕНИЕ. Ещё один способ построить базис e_1^*,\ldots,e_n^* состоит в следующем. Рассмотрим линейный оператор $\psi:\mathbb{R}^n\to\mathbb{R}^n$, заданный в базисе e_1,\ldots,e_n матрицей G. Так как этот оператор является самосопряжённым, в некотором ортонормированном базисе $\hat{e}_1,\ldots,\hat{e}_n$ он будет иметь диагональную матрицу с диагональными элементами $\lambda_1,\ldots,\lambda_n$ (это собственные числа матрицы G, причём все они положительны), и мы можем взять

$$e_i^* = \frac{\hat{e}_i}{\sqrt{\lambda_i}}, \quad i = 1, \dots, n,$$

поскольку

$$(\hat{e}_i,\hat{e}_j)_G = egin{cases} \lambda_i, & ext{ecли } i=j, \ 0, & ext{ecли } i
et j. \end{cases}$$

Например, для указанной выше матрицы G получим $\lambda_1=3,\,\lambda_2=6,\,\lambda_3=9,$

$$T = \begin{pmatrix} -2\sqrt{3}/9 & \sqrt{6}/18 & -2/9 \\ -2\sqrt{3}/9 & -\sqrt{6}/9 & 1/9 \\ \sqrt{3}/9 & -\sqrt{6}/9 & -2/9 \end{pmatrix}, \quad A = \begin{pmatrix} -2\sqrt{3}/3 & -2\sqrt{3}/3 & \sqrt{3}/3 \\ \sqrt{6}/3 & -2\sqrt{6}/3 & -2\sqrt{6}/3 \\ -2 & 1 & -2 \end{pmatrix}.$$

Замечание. Если

$$Gram(a_1,\ldots,a_n)=Gram(b_1,\ldots,b_n)=G$$

для двух базисов евклидова пространства, то линейное преобразование φ , для которого

$$\varphi(a_i) = b_i, \quad i = 1, \ldots, n,$$

является ортогональным. Действительно, пусть e_1,\ldots,e_n — некоторый ортонормированный базис V, а A и B — матрицы перехода от этого базиса к базисам a_1,\ldots,a_n и b_1,\ldots,b_n соответственно. Тогда $G=A^tA=B^tB$, а матрица преобразования φ в базисе e_1,\ldots,e_n есть

$$U = BA^{-1}.$$

Легко видеть, что $U^{-1}=U^t$, т. е. матрица U ортогональна (в отличие от матрицы

$$V = A^{-1}B,$$

которая является матрицей преобразования φ в базисе a_1,\ldots,a_n и для которой $G=V^tGV$).