2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Double rotation and sum of energy
Сообщение05.11.2014, 13:24 
Аватара пользователя


03/09/13
85
France
At time t=0

At time $t=0$, I rotate a grey disk or ring with a rough outer surface at angular velocity $w_1$ around the blue axis (clockwise) and at $w_2$ around the green axis (counterclockwise) as shown in the figure. $w_2$ is relative to black arm.

Изображение

Now, the kinetic energy of the system is $K_E = \frac{1}{2}md^2w_1^2+\frac{1}{2}mr^2(w_1-w_2)^2$ or $K_E = \frac{1}{2}md^2w_1^2+\frac{1}{4}mr^2(w_1-w_2)^2$ (ring or disk), with $d$ the lenght of the arm, $m$ the mass of disk and $r$ radius of disk.

I built N systems like that:

Изображение

**Noted blue axis are fixed to the ground.** There is friction between disks. Like black arms are turning at the same rotationnal velocity, disks are always in contact. I count all energies including the energy of friction. For simplify the study I consider friction from disk/disk give the same force F even $w_2$ decreasing, it's possible to imagine a theoretical problem or in reality it's possible to imagine oil between disks and something remove oil more and more when $w_2$ decrease. Each disk give heating $2E_1$ and like each disk is slow down its energy increase of $E_2$. I need to give energy at two last systems $2E_1$. With N systems, the sum of energy is $(N-1)2E_1+NE_2-2E_1$.

Friction can be obtain, for example, with two forces $F1/F2$: disks must be side to side. These forces don't work. An example with 2 positions at 2 diffrent times:

Изображение

Only forces that need energy are magenta forces (purple). But these forces need the same energy for 3 systems than for 10 or more. In the contrary, with 10 systems, heating is higher and energy of each disk increase too.

Works of forces

$F$ is the value of green or magenta force

$w_{disks} = +N \frac{1}{2}mr^2((w_1-w_{2i})^2-(w_1-w_{2f})^2)$

with $w_{2f}<w_{2i}$
with $w_{2f}$: $w_2$ at final and $w_{2i}$: $w_2$ initial.

$W_{friction}=2(N-1)Frw_{2m}t$ with $w_{2m}$ the mean of $w_{2}$

$W_{F1}=2dF-2dF=0$
$W_{F2}=2dF-2dF=0$


$W{magentaforce}= -2Fdw_{2m}t$


$Sum=+N \frac{1}{2}mr^2((w_1-w_{2i})^2-(w_1-w_{2f})^2)+2(N-2)Frw_{2m}t$

Sum of energy

Before $t=0$, the system (N disks) has the energy $N(\frac{1}{2}md^2w_1^2+\frac{1}{4}mr^2(w_1-w_2)^2)$

At final, the system has the energy:

$$N(\frac{1}{2}md^2w_1^2+\frac{1}{4}mr^2(w_1-w_2)^2)+N \frac{1}{2}mr^2((w_1-w_{2i})^2-(w_1-w_{2f})^2)+2(N-2)Frw_{2m}t$$

My question is :

The sum of energy is not constant in this case ?

---------------------------------------------------------------

I added more cases for watch different positions of the system:



Изображение


Following image shows blue axis fixed to the ground:

Изображение



[1]: http://i.stack.imgur.com/6lv7v.png
[2]: http://i.stack.imgur.com/u17pO.png
[3]: http://i.stack.imgur.com/CxZwk.png
[4]: http://i.stack.imgur.com/XBexc.png
[5]: http://i.stack.imgur.com/PxFvX.png

 Профиль  
                  
 
 Re: Double rotation and sum of energy
Сообщение05.11.2014, 14:01 
Заслуженный участник


29/11/11
4390
I think something incorrect in initial $K_E$ calculation, for ring it must be $\frac{m (w_1^2 d^2 + w_2^2 r^2)}{2}$.

For each particle on ring $v^2 = w_1^2 d^2 + w_2^2 r^2 + 2 w_1 d\cdot w_2 r \cos(\varphi)$ and mass of each particle $dm = \frac{m d\varphi}{2\pi}$

 Профиль  
                  
 
 Re: Double rotation and sum of energy
Сообщение05.11.2014, 14:03 
Аватара пользователя


03/09/13
85
France
you're sure ? w2 is relative to black arm

 Профиль  
                  
 
 Posted automatically
Сообщение06.11.2014, 03:35 
Админ форума
Аватара пользователя


19/03/10
8952
 i  Тема перемещена из форума «Физика» в форум «Помогите решить / разобраться (Ф)»

 Профиль  
                  
 
 Re: Double rotation and sum of energy
Сообщение06.11.2014, 10:49 
Аватара пользователя


03/09/13
85
France
my expression is correct:

http://physics.stackexchange.com/questi ... t-a-s?lq=1

 Профиль  
                  
 
 Re: Double rotation and sum of energy
Сообщение06.11.2014, 11:19 
Заслуженный участник


29/11/11
4390
If it relative to arm then $w_2$ replaced to $w_2-w_1$ and expression correct. But such unusual definition of different angular velocities relative to different reference frames can be source of many hidden errors.

 Профиль  
                  
 
 Re: Double rotation and sum of energy
Сообщение06.11.2014, 11:45 
Аватара пользователя


03/09/13
85
France
what is the difference between $(w2-w1)^2$ and $(w1-w2)^2$ if the expression is a square ?

 Профиль  
                  
 
 Re: Double rotation and sum of energy
Сообщение07.11.2014, 15:02 
Аватара пользователя


03/09/13
85
France
Nobody ?

The expression of KE is correct. Sum of work seems correct. What's wrong ?

 Профиль  
                  
 
 Re: Double rotation and sum of energy
Сообщение08.11.2014, 11:59 
Аватара пользователя


03/09/13
85
France
@rustot : have you seen I wrote |w1| > |w2| in the first message (image). I don't understand your last message, kinetic energy is a function of (w1-w2)², with |w1| > |w2|, if w2 decrease the kinetic energy increase no ?

thanks for your help

 Профиль  
                  
 
 Re: Double rotation and sum of energy
Сообщение13.11.2014, 12:55 
Заслуженный участник


29/11/11
4390
I said that with such unusual definition of $w_2$ your formula of kinetic energy is correct.

But such definition is source of potential mistakes and let me use everywhere below $w_3$ and $w(t)$ for angular speed of ring clockwise in inertial reference frame. You can at any moment replace it back to your definitions via $w_3 = w_1-w_2$

Friction $F$ for first and last ring compensated by horizontal external forces $F$, that in sum consume power $P = F (w_3 r + w_1 d \cos(\varphi)) + F (w_3 r - w_1 d \cos(\varphi)) = 2 F w_3 r$. For another intermediate rings it not competsated and each of them lose angular speed due sum of 2 friction forces. $\frac{dw}{dt} = - \frac{2 F}{m r}$, $w(t) = w_3 - \frac{2 F}{m r}t$. With fixed $F$ it will continues lineary till $w(t_0) = 0$. From this moment there different behaviour for even and odd number of rings, but till this moment no difference and lets stop calculation at this moment $t_0 = \frac{w_3 m r}{2 F}$

Heating power at each contact between ring $i$ and ring $j$ is $F (w_i+w_j) r$. Between intermediate rings (ie in $N-3$ contact points) it $F (2 w_3 - \frac{4 F}{m r} t) r$, and in 2 rest points it $F (2 w_3 - \frac{2 F}{m r}t)r$ and in sum $(N-1) 2 F w_3 r - (N-2) \frac{4 F^2}{m} t$. And total heating energy during $t_0$ is $(N-1) 2 F w_3 r t_0 - (N-2)\frac{2 F^2 t_0^2}{m} =  N \frac{m w_3^2 r^2}{2}$

So during $t_0$ on the one hand external 2 forces $F$ did work $2 F w_3 r t_0 = m w_3^2 r^2$, intermediate rings lose $(N-2) \frac{m w_3^2 r^2}{2}$ of kinetic energy, on the other hand we got $N \frac{m w_3^2 r^2}{2}$ of heating energy. Balance is zero

As you can see, $w_1$ finally do not affect anything. It affect for example work of upper external $F$ but affect work of lower external $F$ in opposite direction and as result do not affect summary external work. Only with strange definition of $w_2$ it can appear in final result

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 10 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group