2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 протеворечивость в задаче по механике
Сообщение15.03.2013, 17:06 


22/06/12
417
Господа, объясните не понимание.

Есть тело, круглой формы, которое скатывается с горки. Вопрос определить скорость которую приобретет тело когда съедет с горки.
вроде бы элементарно. пользуемся Законом Сохранения Энергии. Учитываем, что кинетическая энергия состоит из поступательной и вращательной части, получаем ответ $$v=(10gh/7)^{1/2}$$
все отлично.

Но мы считали относительно неподвижной системы, а если мы будем производить расчет относительно системы которая движется т.е
Изображение
тогда по закону сохранения:
$$mgh+mv^2/2 = I\omega^2/2$$ где $$V=\omega R$$

Господа!!! как мы можете видеть, при выражении v из этого уравнения, оно получается отрицательно! откройте мне секрет.

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 17:32 
Заслуженный участник


28/12/12
7944
Известный "парадокс". В движущейся системе надо учитывать изменение кинетической энергии Земли.

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 17:35 
Заслуженный участник
Аватара пользователя


06/04/10
3152
illuminates в сообщении #696112 писал(а):
круглой формы

А точнее? Там дальше какой-то момент инерции...

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 17:51 


22/06/12
417
nikvic
момент инерции шара: $$2mR^2/5 $$

-- 15.03.2013, 18:52 --

DimaM
а не подскажите где можно посмотреть решение подобной задачи?

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 19:04 


10/02/11
6786
для простоты пусть катится не диск , аматериальная точка по совершенно гладкой горке. в неподвижной системе координат (связанной с горкой) сила реакции горки перпендикулярна скорости точки, поэтому сила реакции работу не совершает и мы применяем закон сохранения энергии в обычной форме $mgh=mv^2/2$.
Скорость точки в подвижной системе (относительная скорость) равна разности ее скорости в неподвижной системе и скорости самой системы. Относительна скорость не перпендикулярна реакции горки -- в подвижной системе сила реакции горки совершает работу

-- Пт мар 15, 2013 19:10:52 --

DimaM в сообщении #696135 писал(а):
Известный "парадокс". В движущейся системе надо учитывать изменение кинетической энергии Земли.

бред какой

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 19:55 
Заслуженный участник
Аватара пользователя


06/04/10
3152
Oleg Zubelevich в сообщении #696193 писал(а):
бред какой

Да нет, нормальный предел при стремлении одной из масс к бесконечности. Та самая работа, с которой Ваша мат. точка пихает клин.

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 20:00 
Заслуженный участник


04/05/09
4589
Oleg Zubelevich в сообщении #696193 писал(а):
бред какой
Разве?
Во первых, вы забыли про силу трения, которая работу очень даже совершает.
Во вторых, ваш способ нисколько не упрощает решение, ТС же хотел просто использовать сохранение энергии в начале и конце.
Это можно делать в СО связанной с Землёй, т.к. изменение кинетической энергии Земли пренебрежимо мало. Но вот при переносе этого метода в движущуюся ИСО народ забывает, что в этом случае изменение КЭ Земли очень даже ненулевое, и старый способ сравнения энергий в начале и в конце уже не работает.

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 20:07 
Заслуженный участник
Аватара пользователя


06/04/10
3152
venco в сообщении #696237 писал(а):
Это можно делать в СО связанной с Землёй, т.к. изменение кинетической энергии Земли пренебрежимо мало.

Точнее, в системе отсчёта, связанной с Землёй до покатушек.
В подвижной оно в точности равно "дефекту решения".

Модельная школьная задача (штоп Землю не подкручивать) - пружинная пушка (дана энергия пружины и две массы) на платформе в двух ОС.

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 20:09 
Заслуженный участник


04/05/09
4589
nikvic в сообщении #696245 писал(а):
Точнее, в системе отсчёта, связанной с Землёй до покатушек.
Ну да. Хотел покороче написать, а там ещё проблема с отличием СО Земли от ИСО.

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 20:30 


10/02/11
6786
venco в сообщении #696237 писал(а):
Во первых, вы забыли про силу трения, которая работу очень даже совершает.

не забыл, а рассмотрел другую задачу (модельную), читать надо как следует

venco в сообщении #696237 писал(а):
Но вот при переносе этого метода в движущуюся ИСО народ забывает, что в этом случае изменение КЭ Земли очень даже ненулевое, и старый способ сравнения энергий в начале и в конце уже не работает.

а почему именно Земли? почему еще солнечную систему не прихватить?

venco в сообщении #696237 писал(а):
Во вторых, ваш способ нисколько не упрощает решение

что и не входило в мои планы, я лишь разъяснил суть "парадокса"

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 20:38 
Заслуженный участник


04/05/09
4589
Oleg Zubelevich в сообщении #696260 писал(а):
я лишь разъяснил суть "парадокса"
ИМХО именно этого вы и не сделали. Вы объяснили как решать правильно, но не объяснили почему другой способ, обычно работающий, в этот раз дал неправильный результат.

-- Пт мар 15, 2013 13:40:12 --

Oleg Zubelevich в сообщении #696260 писал(а):
а почему именно Земли? почему еще солнечную систему не прихватить?
Потому что в системе Земли считать проще. По моему, это очевидно.

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 21:02 


10/02/11
6786
venco в сообщении #696263 писал(а):
Потому что в системе Земли считать проще. По моему, это очевидно.

а с формулами покажите пожалуйста как вы это делаете на притмере задачи о материальной точке, которая соскальзывает без трения с наклонной горки

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 21:07 
Заслуженный участник


04/05/09
4589
Oleg Zubelevich, вы удалили сообщение, но я уже написал много текста, не пропадать же добру...
Oleg Zubelevich в сообщении #696275 писал(а):
вот потому и не дал , что в подвижной системе сила реакции совершает работу и это надо учитывать при выписывании энергетических соотношений.
При выборе закона сохранения энергии для решения часто не смотрят на работу сил, тем более, что она может быть ненулевой в процессе, но равной нулю в конце. Если написано "без трения", или "без проскальзывания", то потерь энегии на тепло нет, а значит можно использовать ЗС(кин.+потенц.)Э. И если нет достаточно опыта, то про изменение кинетической энергии Земли забывают, ведь в общепринятой СО этим можно пренебречь. Соответственно "парадокс" возник у ТС именно потому, что он использовал это свойство СО Земли в другой СО, которая этим не обладает. Я думаю ТС из наших объяснений понял свою ошибку, а может даже проверил, точно посчитав изменение кинетической энергии Земли в разных СО.
А вот ваше объяснение, скорее всего, ничего ТС не дало - я думаю он и так знает про работы сил.

-- Пт мар 15, 2013 14:09:25 --

Oleg Zubelevich в сообщении #696285 писал(а):
venco в сообщении #696263 писал(а):
Потому что в системе Земли считать проще. По моему, это очевидно.

а с формулами покажите пожалуйста как вы это делаете на притмере задачи о материальной точке, которая соскальзывает без трения с наклонной горки
Дык, в первом же сообщении темы формулы есть. Надо только вращение убрать.

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 21:19 


10/02/11
6786
venco в сообщении #696286 писал(а):
Дык, в первом же сообщении темы формулы есть. Надо только вращение убрать.


Вы покажите как вы используете кин. энергию Земли что бы снять парадокс. Только аккуратно и подробно.

 Профиль  
                  
 
 Re: протеворечивость в задаче по механике
Сообщение15.03.2013, 21:23 
Заслуженный участник


04/05/09
4589
Oleg Zubelevich в сообщении #696290 писал(а):
Вы покажите как вы используете кин. энергию Земли что бы снять парадокс. Только аккуратно и подробно.
Вы о чём? В СО Земли кин. энергией Земли пренебрегаем. В другой СО этот метод неприменим.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 29 ]  На страницу 1, 2  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group