2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Обратные расстояния в треугольнике
Сообщение25.09.2012, 07:17 
Аватара пользователя
Рассмотрим точку внутри треугольника и будем интересоваться суммой
$$S = \frac 1 d_1 +\frac 1 d_2 + \frac 1 d_3,$$ где $d_i$ - расстояния от точки до сторон треугольника.
Эта сумма связана с некоторыми физическими приложениями.
Например, если линии, на которых лежат стороны, это автодороги, то $S$ пропорционально уровню шума в точке.
Численные опыты показывают, что $S$ всегда имеет единственный минимум внутри треугольника.
(Если треугольник - это лес в окружении дорог, то актуален вопрос, где тише всего).
Для правильного треугольника точка минимума, конечно, совпадает с центром.
Для неправильного координаты минимума можно найти аналитически, но довольно громоздко.
Очень интересно, существуют ли чисто геометрические рассмотрения этой суммы, а особенно положения точки минимума?

 
 
 
 Re: Обратные расстояния в треугольнике
Сообщение25.09.2012, 09:28 
Пусть $\alpha$, $\beta$, $\gamma$ --- углы треугольника. Проведём через данную точку чевианы; пусть они делят стороны в отношениях $\lambda$, $\mu$, $\nu$. Тогда минимум будет при
$$
\lambda=\sqrt{\frac{\sin{\alpha}}{\sin{\beta}}}, \quad
\mu=\sqrt{\frac{\sin{\beta}}{\sin{\gamma}}}, \quad
\nu=\sqrt{\frac{\sin{\gamma}}{\sin{\alpha}}}.
$$

 
 
 
 Re: Обратные расстояния в треугольнике
Сообщение25.09.2012, 10:11 
Кстати, воспользовавшись неравенством Коши-Буняковского, можно увидеть, что расстояния от искомой точки до сторон треугольника удовлетворяют равенствам: $\sqrt{a}d_1=\sqrt{b}d_2=\sqrt{c}d_3$, где $a, b, c$ - стороны треугольника. Т.е. трилинейные координаты $\frac{1}{\sqrt{a}}:\frac{1}{\sqrt{b}}:\frac{1}{\sqrt{c}}$. Странно, но мне не удалось найти ничего подобного в энциклопедии центров треугольника Кларка Кимберлинга, содержащей свыше 5000 различных центров.

 
 
 
 Re: Обратные расстояния в треугольнике
Сообщение25.09.2012, 13:57 
Аватара пользователя
Огромное спасибо, очень содержательные ответы!
Действительно, я тоже был удивлён, что нигде не рассматриваются суммы степеней расстояний до сторон и их экстремумы.
Где-то попадалось нечто про сумму первых степеней $d_1 +d_2+d_3$. Сам доказал, что она одинакова для всех внутренних точек правильного треугольника.
Численно вроде видно, что все суммы отрицательных степеней имеют строгие минимумы. Остальное как-то непонятно...

 
 
 
 Re: Обратные расстояния в треугольнике
Сообщение25.09.2012, 14:07 
Lesobrod в сообщении #623313 писал(а):
Численно вроде видно, что все суммы отрицательных степеней имеют строгие минимумы. Остальное как-то непонятно...

Не только численно. Обратное расстояние до каждой из сторон есть выпуклая функция. Правда, выпуклая лишь нестрого, но строгость нарушается только на прямых, параллельных данной стороне, а на любых других прямых остаётся строгой. Поэтому сумма любых двух таких расстояний (тем более всех трёх) есть уже функция строго выпуклая. А поскольку на границе треугольника эта функция обращается в бесконечность -- внутри треугольника у неё есть ровно один строгий минимум.

 
 
 
 Re: Обратные расстояния в треугольнике
Сообщение26.09.2012, 08:23 
Пусть нам надо найти расстояния $x, y, z$ от точки, лежащей внутри треугольника, до его сторон $a, b, c$ соответственно, такой, что $x^n+y^n+z^n \rightarrow \min$. Пусть $S$ - площадь треугольника. Тогда $ax+by+cz=2S$. Находим условный экстремум и видим, что $x:y:z=a^\frac{1}{n-1}:b^\frac{1}{n-1}:c^\frac{1}{n-1}$ при $n \neq 1$.

 
 
 
 Re: Обратные расстояния в треугольнике
Сообщение26.09.2012, 08:48 
Lesobrod в сообщении #623225 писал(а):
Например, если линии, на которых лежат стороны, это автодороги, то $S$ пропорционально уровню шума в точке.

Для уровней шумов, наверное, лучше учитывать квадраты расстояний до дорог.

 
 
 
 Re: Обратные расстояния в треугольнике
Сообщение26.09.2012, 08:59 
Аватара пользователя
Это для точечного источника шума. А для прямой дороги, может быть, и нет. Если поинтегрировать, то как раз останется расстояние в минус первой и угол, под которым видно дорогу :?: Если участок дороги достаточно длинный по сравнению с расстоянием до неё, то как раз и получается.

 
 
 
 Re: Обратные расстояния в треугольнике
Сообщение26.09.2012, 14:02 
gris в сообщении #623542 писал(а):
Если поинтегрировать, то как раз останется расстояние в минус первой и угол, под которым видно дорогу


Если считать дорогу бесконечно длинной прямой линией, излучающей постоянную мощность звука на единицу длины, звуковая интенсивность будет в точности обратно пропорциональна расстоянию до дороги; вывод полностью аналогичен нахождению поля бесконечной равномерно заряженной нити.

 
 
 
 Re: Обратные расстояния в треугольнике
Сообщение26.09.2012, 15:40 
Аватара пользователя
Sender А я о том же. Если дорога бесконечная, то угол всегда будет равен пи, и останется только расстояние в минус первой степени с постоянным коэффициентом, что и есть обратная пропорциональность. Угол получается от суммы арктангенсов.
Просто если действительно минимизировать уровень шума в равномерно шумящем треугольнике (без учёта интерференции и прочих факторов :-) ), то будет ли это другая точка?

 
 
 
 Re: Обратные расстояния в треугольнике
Сообщение18.05.2013, 01:40 
Все то у вас хорошо, только в жизни дороги треугольником - редкость
типовой случай прямоугольник дорог со сторонами a, b
интенсивности источников каждой дороги $I_1,I_2,I_3,I_4$
тогда если $x,y$- координаты оптимальной точки внутри прямоугольника то условие $\min(\frac{I_1}{x}+\frac{I_2}{a-x}+\frac{I_3}{y}+\frac{I_4}{b-y})$
выполнено при $x=\frac{I_1a}{I_1+I_2}$ $y=\frac{I_3b}{I_3+I_4}$

 
 
 
 Re: Обратные расстояния в треугольнике
Сообщение30.03.2015, 20:06 
Интересные вопросы. А приложения про шум где-то описаны в литературе, или другие приложения подобных задач со степенями расстояний? (про задачу Штейнера я знаю).

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group