Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия, Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
It is given a circle k. From the point P are drawn the tangents PA and PB to the k. On the smaller arc AB is chosen a point Q. PQ intersects k at the point C. From Q is drawn a parallel line to AP that intersects AC at the point D. If M is the intersection point of AB and QD prove that M is the middle of QD
Dimoniada
29.03.2011, 07:58
На лежит симедиана тр-ика . Далее очевидно.
ins-
Re: An easy problem
29.03.2011, 10:28
Can you be more detailed if you have time?
Dimoniada
30.03.2011, 07:20
Let . From similarity and we obtain: , , i.e. (). Next step , , so , => and consequently - symedian in . Finally => - median in .
ins-
Re: An easy problem
30.03.2011, 09:18
Thank you for the excellent solution. I (re)discovered the statement at my own. Hope you like it.