2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Сильнее, чем Несбит.
Сообщение21.04.2017, 22:31 
Аватара пользователя


11/12/16
13166
уездный город Н
grizzly

двойку потерял. :facepalm: :oops: Спать пора. Сорри, за бред.

 Профиль  
                  
 
 Re: Сильнее, чем Несбит.
Сообщение22.04.2017, 08:59 


24/12/13
351
arqady в сообщении #1210908 писал(а):
Для положительных $a$, $b$ и $c$ докажите, что:
$$\frac{a}{\sqrt[4]{8(b^4+c^4)}}+\frac{b}{a+c}+\frac{c}{a+b}\geq\frac{3}{2}$$


Может попробуем сперва доказать

$$\frac{a}{\sqrt{2(b^2+c^2)}}+\frac{b}{a+c}+\frac{c}{a+b}\geq\frac{3}{2}$$

 Профиль  
                  
 
 Re: Сильнее, чем Несбит.
Сообщение22.04.2017, 11:04 
Аватара пользователя


11/12/16
13166
уездный город Н
rightways

А в чем сложность?
1. Путем предложенной выше замены доказывается, что сумма второго и третьего слагаемого достигает минимума при фиксированном $r$ при $\alpha=0$ (то есть при $b=c$).
2. Первое слагаемое от $\alpha$ не зависит.
3. Значит минимум всей суммы там же: $b=c$.
4. Минимизируем ту же самую функцию, что и прошлый раз.

 Профиль  
                  
 
 Re: Сильнее, чем Несбит.
Сообщение22.04.2017, 11:27 
Заслуженный участник


26/06/07
1929
Tel-aviv
rightways в сообщении #1211522 писал(а):

Может попробуем сперва доказать

$$\frac{a}{\sqrt{2(b^2+c^2)}}+\frac{b}{a+c}+\frac{c}{a+b}\geq\frac{3}{2}$$

Это было в Short List румынской олимпиады в этом году.

 Профиль  
                  
 
 Re: Сильнее, чем Несбит.
Сообщение22.04.2017, 12:01 


30/03/08
196
St.Peterburg
arqady в сообщении #1211558 писал(а):
rightways в сообщении #1211522 писал(а):

Может попробуем сперва доказать

$$\frac{a}{\sqrt{2(b^2+c^2)}}+\frac{b}{a+c}+\frac{c}{a+b}\geq\frac{3}{2}$$

Это было в Short List румынской олимпиады в этом году.


$$\frac{a}{\sqrt{2(b^2+c^2)}}+\frac{b}{a+c}+\frac{c}{a+b} \ge \dfrac{(a+b+c)^2}{a\sqrt{2(a^2+b^2)}+b(a+c)+c(a+b)} \ge \dfrac{3}{2}$$

$$\Leftrightarrow 2a^2+\left( b+c-3\sqrt{2(b^2+c^2)}\right)a+2(b^2+c^2-bc)\ge 0$$

$$ \left (b+c-3\sqrt{2(b^2+c^2)} \right )^2 \le 16(b^2+c^2-bc)$$

$$\Leftrightarrow b^2+c^2+6bc \le 2(b+c)\sqrt{2(b^2+c^2)}$$

$$ b^2+c^2+6bc  \le 2(b+c)^2 \le 2(b+c)\sqrt{2(b^2+c^2)}$$

 Профиль  
                  
 
 Re: Сильнее, чем Несбит.
Сообщение22.04.2017, 13:42 


30/03/08
196
St.Peterburg
Аналогично проходит случай с кубами :

$$\frac{a}{\sqrt[3]{4(b^3+c^3)}}+\frac{b}{a+c}+\frac{c}{a+b} \ge  \dfrac{3}{2}$$

$$ \left (b+c-3\sqrt[3]{4(b^3+c^3)} \right )^2 \le 16(b^2+c^2-bc)$$

$$z= \sqrt{\dfrac{b}{c}}+\sqrt{\dfrac{c}{b}}\ge 2\  ,\ \ f(z)= 16(z^2-3)-\left( z-3\sqrt[3]{4z(z^2-3)}\right)^2 \ge 0$$

 Профиль  
                  
 
 Re: Сильнее, чем Несбит.
Сообщение24.04.2017, 12:39 


24/12/13
351
$$16(a+b+c)^5\ge 81(8a(b^4+c^4)+b(c+a)^4+c(a+b)^4)$$

 Профиль  
                  
 
 Re: Сильнее, чем Несбит.
Сообщение24.04.2017, 16:09 


24/12/13
351
мое последнее неравенство, оно верно?

 Профиль  
                  
 
 Re: Сильнее, чем Несбит.
Сообщение24.04.2017, 21:06 
Заслуженный участник


23/07/08
10609
Crna Gora
Нет, подставьте $a=1, b=1, c=2$.

 Профиль  
                  
 
 Re: Сильнее, чем Несбит.
Сообщение29.04.2017, 12:20 


03/03/12
1380

(Оффтоп)

wrest в сообщении #1211244 писал(а):
Условие задачи выполняется (проверил численно).

У меня при $a=1$, $bc=1$ получается многочлен от одной переменной. Он, по условию, должен быть неотрицательным во всей области определения. Так ли это? Считаю на Вольфраме. Не получается.

 Профиль  
                  
 
 Re: Сильнее, чем Несбит.
Сообщение29.04.2017, 15:27 
Заслуженный участник


26/06/07
1929
Tel-aviv
TR63 Думаю, Вы где-то ошибаетесь.

 Профиль  
                  
 
 Re: Сильнее, чем Несбит.
Сообщение29.04.2017, 16:09 


03/03/12
1380
У меня получилось после преобразований неравенство
$b^2(b+1)>{8(b^8+1)}^{0.25}(1.5b(b+1)-1-b^3)$
Если правая часть положительна (это я не проверила, а зря), возводим обе части в четвёртую степень. Да, поняла. Всё сходится. Спасибо за ответ.
Исходное неравенство можно свести к виду

$2a^2+[2bc+2tb+2tc]a+t\{2b^2+2c^2-3(1-c)(1-b)\}\ge0$

$t=(8(b^4+c^4))^{0.25}$

$a+b+c=1$

 Профиль  
                  
 
 Re: Сильнее, чем Несбит.
Сообщение23.03.2018, 21:49 
Аватара пользователя


14/03/18
87
Пусть $2u=a+b, v^2=ab$, тогда неравенство эквивалентно
$\frac{a}{2\sqrt[4]{8u^4-8u^2v^2+v^4}}+\frac{2ua+4u^2-2v^2}{a^2+2ua+v^2}\geq\frac{3}{2}$
или
$a^3-(3\sqrt[4]{8u^4-8u^2v^2+v^4}-2u)a^2-(2u\sqrt[4]{8u^4-8u^2v^2+v^4}-v^2)a+(8u^2-7v^2)\sqrt[4]{8u^4-8u^2v^2+v^4}\geq0$
$f'(a)=3a^2-2(3\sqrt[4]{8u^4-8u^2v^2+v^4}-2u)-2u\sqrt[4]{8u^4-8u^2v^2+v^4}+v^2$

$a=\frac{3\sqrt[4]{8u^4-8u^2v^2+v^4}-2u+\sqrt{9\sqrt{8u^4-8u^2v^2+v^4}-6u\sqrt[4]{8u^4-8u^2v^2+v^4}+4u^2-3v^2}}{3}$

$f(\frac{3\sqrt[4]{8u^4-8u^2v^2+v^4}-2u+\sqrt{9\sqrt{8u^4-8u^2v^2+v^4}-6u\sqrt[4]{8u^4-8u^2v^2+v^4}+4u^2-3v^2}}{3})=2\frac{(\sqrt{9\sqrt{8u^4-8u^2v^2+v^4}-6u\sqrt[4]{8u^4-8u^2v^2+v^4}+4u^2-3v^2})^3+27\sqrt[4]{(8u^4-8u^2v^2+v^4)^3}-27u\sqrt{8u^4-8u^2v^2+v^4}-(90u^2-81v^2)\sqrt[4]{8u^4-8u^2v^2+v^4}-8u^3+9uv^2}{27}$
или
$-27\sqrt[4]{(8u^4-8u^2v^2+v^4)^3}+27u\sqrt{8u^4-8u^2v^2+v^4}+(90u^2-81v^2)\sqrt[4]{8u^4-8u^2v^2+v^4}\leq(\sqrt{9\sqrt{8u^4-8u^2v^2+v^4}-6u\sqrt[4]{8u^4-8u^2v^2+v^4}+4u^2-3v^2})^3$
Избавляемся от корней
$(110u^3-90uv^2)\sqrt[4]{(8u^4-8u^2v^2+v^4)^3}+(142u^4-261u^2v^2+117v^4)\sqrt[4]{(8u^4-8u^2v^2+v^4)^2}+(64u^5-124u^3v^2+60uv^4)\sqrt{8u^4-8u^2v^2+v^4}-900u^6+1656u^4v^2-869u^2v^4+95v^6\leq0$
$x=\sqrt{8u^4-8u^2v^2+v^4}$
$g(x)=(110u^3-90uv^2)x^3+(142u^4-261u^2v^2+117v^4)x^2+(64u^5-124u^3v^2+60uv^4)x-900u^6+1656u^4v^2-869u^2v^4+95v^6\leq0$
Так как $g(x)$ выпукла, то максимум достигается при $u^2=v^2$.
P.S, если нашли ошибку в рассчётах сообщите.

 Профиль  
                  
 
 Re: Сильнее, чем Несбит.
Сообщение24.03.2018, 15:25 
Аватара пользователя


14/03/18
87
Прошу прощения за проблемы с $LaTeX$ и за ошибку с переменными, $2u=b+c, v^2=bc$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 29 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group