2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.
 
 Делить доказательство ВТФ на два случая нет необходимости
Сообщение21.07.2013, 23:13 


10/08/11
671
Деление доказательства ВТФ на два случая отпадает, если принять во внимание, что если бы существовало хотя бы одно решение в целых числах уравнения $x^n+y^n=z^n$ для произвольного показателя, то любую степень можно было бы представить суммой двух степеней с рациональными основаниями. Действительно, пусть имеется хотя бы одно решение для произвольного целого показателя $n>2$, то есть существует равенство

(1) $a^n+b^n=c^n$ или

(2) $(a/c)^n+(b/c) ^n =1 $

Тогда, умножив на (2) любую степень $d^n$ с произвольным показателем $n>2$ и целым основание, мы получили бы


(3) $ (da/c)^n+ (db/c)^n= d^n\cdot1$

Следовательно, при существовании равенства (1) (существование хотя бы единственного решения), любая степень с натуральным основанием при произвольном показателе представима суммой двух степеней с рациональными основаниями при том же произвольном показателе.
Очевидно и обратное, – невозможность представления хотя бы одной степени с произвольным показателем суммой двух других степеней с рациональными основаниями и тем же произвольным показателем доказывает справедливость ВТФ в целом. Будет степень кратна показателю или нет не имеет никакого значения. Например: - достаточно доказать невозможность представления степени $2^n$, суммой двух других степеней с рациональными (очевидно, что данная степень не представима суммой двух степеней с целым основанием) основаниями с тем же произвольным показателем $n>2$.
Известно, что для доказательства ВТФ в целом, достаточно доказать ее для произвольного простого показателя $p>2$.
Сначала, как требует этого форум покажем справедливость теоремы для $p=3$. Подставим значения в (3), считая, что $(a,b,c)$ минимальная возможная тройка решения уравнения Ферма и учитывая, что согласно формулам Абеля, $c$ является составным числом.

(4) $ (2a/c)^3+ (2b/c)^3= 2^3$

С учетом минимальности тройки чисел решения $c$ не может быть кратной $2$. Так как в этом случае, приняв $c=2c_1$, получим

(5) $ (a/c_1)^3+ (b/c_1)^3= 2^3$, тогда

(6) $ 2^3c_1^3/c_1^3= 2^3$,
с учетом (5), то есть представимости, $2^3$ двумя другими степенями

(7) $c_1^3=a_1^3+b_1^3$.

(8) $ (2 a_1/c_1)^3+(2b_1/c_1)^3= 2^3$,

И в этом случае минимальным решением уже будет тройка $(a_1,b_1,c_1)$

Таким же образом, используя (7) мы докажем и для степени $3^3$ минимальное решение не допускает кратности $3$. Напомним, что существование даже единственного решение (7) давало бы нам возможность представления любой степени двумя другими степенями с рациональными основаниями.
Поэтому, продолжая перебирать степени с другими простыми основаниями, $(5^3, 7^3,…..p^3)$ при каком угодно большом $p$ мы получим , что минимальное решение не позволяет основанию $c_1$ быть кратным любому простому числу, но это невозможно, так как $c_1$ есть произведение взаимно простых чисел. И этот механизм справедлив для любого произвольного показателя $p>2$. В нашем доказательстве достаточно заменить показатель 3 на произвольный $p$. И только для $p=2$ наши рассуждения не могут быть применены, так как сумма квадратов равная квадрату не разложима в произведение взаимно простых чисел. Например, использованием одной только минимальной тройки $(3,4,5)$, можно представить любой квадрат суммой двух квадратов с рациональными основаниями ( $49=49\cdot16/25+49\cdot9/25=(28/5)^2+(21/5)^2$, и т.п.). 25 не разлагается в произведение простых чисел, но оно существует, так как сократимо полностью при разложении этого же числа $25=25\cdot16/25+25\cdot9/25=16+9$, в отличии от степеней $p>2$, где ни одна степень с основанием равным простому числу в связи с минимальностью решения не может являться сомножителем$c_1$. Но $c_1$ должно разлагаться на взаимно простые числа. Это и говорит о том, что $c_1$ вообще не существует, и Великая теорема Ферма доказана полностью.

 Профиль  
                  
 
 Re: Делить доказательство ВТФ на два случая нет необходимости
Сообщение27.07.2013, 06:25 


10/08/11
671
Наиболее трудное место в понимании появления бесконечного спуска. Действительно, равенства (5) и (6) утверждают, что после сокращения степень с произвольным простым основанием снова представима суммой двух степеней умножением этой степени на $1$. Но, $1$ равна сумме рациональных дробей, полученных из минимальной тройки. Минимальное решение -единственно. Другой тройки с меньшими значениями $a_1,b_1,c_1$ не может существовать. Поэтому ни каких алгебраических преобразований для нахождения не существующих $a_1,b_1$ не существует. Они не существуют только потому, что не может существовать $c_1$. Отсюда и следует вывод, что $c$ не может делиться на произвольное простое число. Следовательно $c$ - иррациональное число.

 Профиль  
                  
 
 Re: Делить доказательство ВТФ на два случая нет необходимости
Сообщение27.07.2013, 16:58 
Супермодератор
Аватара пользователя


20/11/12
5728
 !  Тема закрыта как логическое продолжение предыдущеий темы Первый и второй случаи ВТФ (простое доказательство), унесенной в Пургаторий.
lasta, предупреждение за дублирование темы.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group