2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 16 маленьких треугольничков
Сообщение01.01.2012, 19:24 
Аватара пользователя


01/12/11

8634
Равносторонний треугольник поделен на 16 маленьких равносторонних треугольничков. В каждый из 15 узлов записано некоторое натуральное число так, что сумма чисел в вершинах каждого маленького треугольничка оказалась нечётной. Сколько среди 15 чисел может быть чётных (указать все возможные ответы)?

 Профиль  
                  
 
 Re: 16 маленьких треугольничков
Сообщение01.01.2012, 21:22 
Заслуженный участник
Аватара пользователя


23/07/08
10907
Crna Gora
Вершины маленького треугольничка могут быть или все три нечетные, или одна нечетная и две четные.

Если хоть один треугольничек имеет две нечетные вершины, то и третья, входящая в тот же треугольничек, будет нечетной; тогда любой смежный с исходным треугольничек будет иметь по крайней мере две нечетные вершины (которые одновременно являются вершинами исходного), а, следовательно, и все три. Так эта зараза распространится на весь большой треугольник, и в нем все вершины будут нечетными (кстати, допустимый вариант: четных 0).

Значит, помимо этого тривиального варианта могут быть только такие, когда у каждого треугольничка только одна нечетная вершина, и, следовательно, нечетные вершины рядом стоять не могут. Это, на самом деле (с точностью до всяких поворотов и отражений) один вариант: начнем с центрального треугольничка, пометим одну его вершину как нечетную, остальные как четные, и тогда все остальные определятся однозначно. В результате получится 5 нечетных вершин и 10 четных.

Ответ: 0 или 10.

Последний вариант можно так еще описать: если раскрасить 15 вершин в три цвета, так, чтобы смежные вершины были разных цветов, то нечетными можно взять вершины какого-то одного цвета.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 2 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Google [Bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group