2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 02:06 
Аватара пользователя
Цитата:
Каждый член ряда будет тождественно равен нулю. Сходимость очевидно есть.


ShMaxG

Всё о том же...

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 02:08 
Аватара пользователя
Ну Вы же знаете n-ый член ряда. И там есть $(x-3)$. Ну что будет, если $x=3$ подставить? :-)
Частичная сумма для любого $n$: $\[{S_n} = 0\]$. Значит предел частичных сумм равен нулю (существует - сл-но ряд сходится). Значит ряд равен нулю. Если Вы этих слов не понимаете -- срочно читайте теорию про числовые ряды, сначала.

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 02:09 
Аватара пользователя
а чего конкретно не понятно....? по чему все члены будут тождественно равны нулю при $x=3$. Так подставьте вместо x , например $x=3$ и всё поймёте..

-- Пт дек 31, 2010 03:10:23 --

Цитата:
Сходимость очевидно есть.

Ferd
вам это понятно?

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 02:20 
Аватара пользователя
ShMaxG

Это понял...

maxmatem

А как это записывается?

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 02:23 
Аватара пользователя
что это?

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 02:29 
Аватара пользователя
maxmatem

То что ShMaxG написал

maxmatem

Цитата:
а чего конкретно не понятно....? по чему все члены будут тождественно равны нулю при . Так подставьте вместо x , например и всё поймёте..


Запишите пожалуйста?

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 02:37 
Аватара пользователя
при $x=3$ вы имеет ряд $0+0+...+0+...$, и угадайте , чему равна сумма этого ряда. :mrgreen:
Вот вы сами подумайте, что значит числовой ряд сходится? Это значит существует предел частичных сумм этого ряда. Вот в вашем примере $S_{1}=0$, $S_{2}=0+0=0$,$S_{3}=0+0+0=0$.......$S_{n}=0+0+...+0=0$,
а теперь вычислите предел от $S_{n}$. Ясно что такой предел существует, и вы вполне можете сказать чему он равен. Ну так чему?

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 02:44 
Аватара пользователя
maxmatem

Формулы не нашёл, но предел будет равен $0$ наверно...

Подскажите, где эту формулу можно найти?

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 02:48 
Аватара пользователя
какую формулу? И ПОЧЕМУ "Наверное"? ТОЧНО. предел константы - константа!

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 03:15 
Аватара пользователя
maxmatem в сообщении #394033 писал(а):
предел константы - константа!

Протестую! ноль беспределен (ибо округл в начертании)!!

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 03:58 
Аватара пользователя
maxmatem

предел от $S_{n}$

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 04:53 
Аватара пользователя
Ferd
уже прочитайте определения

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 13:34 
Аватара пользователя
Ferd
Это очень важно, чтобы Вы прочитали и прониклись всеми соответствующими понятиями. Начинайте с числового ряда. Иначе продолжать разговор просто бессмысленно.

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение31.12.2010, 13:41 
paha в сообщении #394034 писал(а):
Протестую! ноль беспределен (ибо округл в начертании)!!

Зависит от почерка.

 
 
 
 Re: Найти область сходимости степенного ряда
Сообщение03.01.2011, 03:48 
Аватара пользователя
maxmatem

Как же записывается теорема Адамара-Коши?

 
 
 [ Сообщений: 31 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group