Вводим обозначение
и подставляем в уравнение Дирака. Тут я ничего не придумал, это есть в квантовой электродинамике ЛЛ. Далее умножаем
на величину
. Гравитационный радиус при разноименных зарядах отрицателен.
По поводу описания многих частиц. Это получается автоматически. Уравнения ОТО зависят от точки в которой рассматривается поле и вычисляется тензор энергии импульса. Значит, умножая в каждой точке пространства на предлагаемый множитель получим уравнение ОТО в одной точке. Причем это справедливо для каждой точки.
Оценим члены, определяющие величину силы торможения излучением в релятивистском случае. Они равны
при скорости частиц близкой к скорости света ЛЛ выделяет последний член, как имеющий наименьший знаменатель, остальными членами пренебрегает. Но дело в том, что первый член умножается на существенно больший коэффициент, чем третий член. Докажем это, для чего выпишем первый и третий член. Введем радиус частицы, равный
Тогда имеем
где величина a характерный размер электромагнитного поля, F напряженность электрического или магнитного поля. Тогда получим
т.е. коэффициент при первом члене много больше третьего члена в величину
Этот фактор сравнивается с величиной
при огромной энергии, например, электрона, равной
Это говорит о том, что ограничиваться второй производной от скорости не достаточно для определения силы торможения. Нужно учитывать следующие члены разложения по степеням относительной скорости.
Разложение для силы реакции излучения описывается рядом
где величина a это размер частицы, с скорость света,
размерный коэффициент. Если этот ряд оборвать, то получим определенное приближение. Т.е. существующие формулы основаны на приближенных соотношениях, и не являются точными.
Вычислив метрический тензор и подставив его в уравнение движения, получим, как я надеюсь, точное значение силы торможения, причем не в виде ряда.
Уравнение Дирака не записывали в криволинейных координатах.
Но сохраняя инвариантный вид уравнения, уравнение с индексами выглядит так
Это в случае ортогонального метрического тензора. В случае не ортогонального как записать уравнение Дирака в криволинейных координатах я не знаю. По видимому надо искать инвариантный вид уравнения.
-- Сб окт 16, 2010 11:41:51 --Как записать уравнение Дирака в ортогональных криволинейных координатах.
Для этого необходимо уточнить коэффициенты Ламе. Запишем оператор
Откуда определим величину
используя значение оператора
}
Решая это уравнение, определим
. Тогда уравнение Дирака запишется в виде