2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 монотонные функции
Сообщение14.09.2010, 19:56 


20/04/09
1067
Доказать, что существует непрерывная функция $f:[0,1]\to\mathbb{R}$ которая не является монотонной ни на каком интервале

 Профиль  
                  
 
 Re: монотонные функции
Сообщение14.09.2010, 20:22 


16/03/10
212
Траектория винеровского процесса подойдет?

 Профиль  
                  
 
 Re: монотонные функции
Сообщение14.09.2010, 20:37 
Заслуженный участник


12/08/10
1608
Ни где не дифференцируемая подойдет. Если она монотонна на интервале то она почти всюду дифференцируема на нем. :D

 Профиль  
                  
 
 Re: монотонные функции
Сообщение14.09.2010, 20:42 
Заслуженный участник
Аватара пользователя


11/04/08
2736
Физтех
terminator-II в сообщении #352475 писал(а):
Доказать, что существует

Открываем Гелбаума на стр. 42 и видим :-).

 Профиль  
                  
 
 Re: монотонные функции
Сообщение14.09.2010, 21:09 


20/04/09
1067
Понятно. А я доказывал, что множество монотонных на каком-либо интервале функций имеет первую категорию Бэра в $C[a,b]$.

 Профиль  
                  
 
 Re: монотонные функции
Сообщение14.09.2010, 23:03 


16/03/10
212
terminator-II в сообщении #352508 писал(а):
Понятно. А я доказывал, что множество монотонных на каком-либо интервале функций имеет первую категорию Бэра в $C[a,b]$.
Интересно ознакомится... Да, и что такое "на каком-либо"? Я готов доказать что множество кусочно-монотонных непрерывных функций плотно в $C[a,b]$.

Поясните, если нетрудно, какое отношение имеет эта ваша нигде не плотность к исходному вашему вопросу? И почему он "олимпиадный"?

 Профиль  
                  
 
 Re: монотонные функции
Сообщение15.09.2010, 08:31 


20/04/09
1067
VoloCh в сообщении #352558 писал(а):
Поясните, если нетрудно, какое отношение имеет эта ваша нигде не плотность к исходному вашему вопросу?

Прямое отношение. Полное метрическое пространство не может иметь первую категорию. Поэтому кроме монотонных на каком-либо интервле функций, в $C[0,1]$ обязательно найдутся и другие.
VoloCh в сообщении #352558 писал(а):
И почему он "олимпиадный"?

А потому, что если не знать теоремы о том, что монотонная непрерывная функция дифференцируема почти всюду, а это нетривиальный факт и, главное, весьма специальный, то доказательство из общих соображений потребует усилий.

-- Wed Sep 15, 2010 09:34:10 --

VoloCh в сообщении #352558 писал(а):
Я готов доказать что множество кусочно-монотонных непрерывных функций плотно в $C[a,b]$.

Не трудитесь: теорема Вейерштрасса о приближении полиномами это уже доказала. Однако то, что я сформулировал этому не противоречит. Я доказываю, что множество монотонных на каком-либо фиксированном интервале функций имеет первую категорию. А потом я беру счетное множество подотрезков так, что в любом интервале содержится по крайней мере один отрезок из этого множества. А дальше объединение счетного числа множеств первой категори это множество первой категории

 Профиль  
                  
 
 Re: монотонные функции
Сообщение15.09.2010, 13:57 


16/03/10
212
terminator-II в сообщении #352631 писал(а):
... объединение счетного числа множеств первой категори это множество первой категории
Ну, то есть множество рациональных чисел отрезка $[0,1]$ как счетное объединение одноточечных множеств является множеством первой категории в ${\mathbb R}$?

 Профиль  
                  
 
 Re: монотонные функции
Сообщение15.09.2010, 14:12 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
VoloCh в сообщении #352695 писал(а):
Ну, то есть множество рациональных чисел отрезка $[0,1]$ как счетное объединение одноточечных множеств является множеством первой категории в ${\mathbb R}$?

Да, конечно. А что, разве нет?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 9 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group