2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Теорема Шредера (Кантора) Бернштейна
Сообщение11.06.2010, 17:33 
Вот в Зориче том 1, стр. 31 предлагается разобрать такое доказательство этой теоремы:

Теорема: $(card X \le card Y) \wedge (card Y \le card X) \Leftrightarrow (card X = card Y)$

Утверждается, что если $f(x)$ биекция $X$ на $Z$, то тогда искомой биекцией будет
$g(x)=f(x)$, если x принадлежит $f^n(X) - g^n(Y)$ и $x$ в противном случае.
(P.S. Здесь разность в смысле разности двух множеств, а $f^n(x)$ - это n-я иттерация функции $f$)

Совершенно непонятно, почему так определенная функция $g(x)$ будет биекцией X на Y

 
 
 
 Re: Теорема Шредера (Кантора) Бернштейна
Сообщение11.06.2010, 17:48 
Аватара пользователя
Посмотрите где-нибудь более подробное/наглядное изложение доказательства.
Мне, например, нравится то, что в брошюрке Верещагин, Шень "Начала теории множеств" (есть на http://www.mccme.ru/free-books/)

 
 
 
 Re: Теорема Шредера (Кантора) Бернштейна
Сообщение11.06.2010, 17:55 
Аватара пользователя
Ну если правильно написать, $f^n(Y)$, а не $g^n(Y)$, и не натуральное $n$, а целое неотрицательное, тогда все понятно?

 
 
 
 Re: Теорема Шредера (Кантора) Бернштейна
Сообщение11.06.2010, 18:02 
Аватара пользователя
А совсем недавно тут Ришелье очень интересно доказывал.

 
 
 
 Re: Теорема Шредера (Кантора) Бернштейна
Сообщение11.06.2010, 19:55 
Да посмотрел доказателство этой теоремы у Натансона, Александрова, Шеня и Колмогорова.
Более понятно, по-моему, это у первых двух.

Наверно и у Зорича тоже правильное доказателство, только неполное, оно нуждается в расшифровке, поскольку там не очень все очевидно.

P.S. Интересно, если Зорич также легковесно и поверхностно относится к другим доказательствам, заменяя трудные места этаким расхожим словечком "ОЧЕВИДНО", то в чем ценность то тогда этого так уж превозносимого двухтомника? Хотелось бы узнать, так как я не читал его действительно ли он уклоняется от разбора трудных мест, оставляя своих студентов один на один ломать голову над его "ОЧЕВИДНАМИ" и искать приемлемые доказательства в других учебниках?

 
 
 
 Re: Теорема Шредера (Кантора) Бернштейна
Сообщение11.06.2010, 20:09 
Sasha2
Там местами он вообще предлагает доказать неправильные утверждения (в упражнениях), как минимум один такой случай на форуме уже обнаружили.

 
 
 
 Re: Теорема Шредера (Кантора) Бернштейна
Сообщение11.06.2010, 20:19 
Да я с Вами полностью согласен, уважаемый id

Вы знаете и в сети тоже есть еще одно так называемое Зорич-подобное док-во этой теоремы в три строчки (Прямо одно из таких в wikipedii выдают). Тоже говорят, что "можно мол показать, что эта биекция", считая, что это легко, хотя на самом деле это самый трудный момент в доказателстве этой теоремы.

Да чего там говорить, посмотрел я еще учебники для МИФИ, МГТУ И МФТИ. Там эту теорему вообще без доказательства принимают (во всяком случае в матане). Так что выходит ранг этой теоремы только для мехмата МГУ. Ну так и надо честно говорить, что эта трудная теорема, а не умничать, как Зорич, пытясь свои три строчки выдавать за доказательство.

 
 
 
 Re: Теорема Шредера (Кантора) Бернштейна
Сообщение11.06.2010, 20:21 
Но местами он все-таки хорош. И современен к тому же по подбору материала.

Ну, так или иначе - а какой в противном случае хороший учебник по мат. анализу?.. Из известных.

 
 
 
 Re: Теорема Шредера (Кантора) Бернштейна
Сообщение11.06.2010, 20:56 
На него очень похож еще Камынин.
Ну а уж если говорить насчет современности, то тут тоже вопрос спорный, так как, считая его превосходным учебником по матану, с другой стороны учебник такого класса и стиля можно рассматривать как недоучебник по тополгии и дифференциальной геометрии и функциональному анализу, откуда надергано всего понемногу.

Да и к тому же он выпущен уже более 30 лет назад. Так что о новизне тоже вряд ли уместно говорить.
А что касаемо содержания, то сомневаюсь глубоко, что он также фундаментален, как например монографии Эйлера, которые переживут и нас и наших внуков. И то же самое справедливо о Фихтенгольце. А вот других таких шедевров пока к сожалению не создано. И вряд ли учебник Зорича принадлежит к их числу.

 
 
 
 Re: Теорема Шредера (Кантора) Бернштейна
Сообщение12.06.2010, 13:50 
Sasha2 в сообщении #330224 писал(а):
На него очень похож еще Камынин.

Ничего подобного, я почитал Камынина, отличный учебник, всё тщательно и честно изложено. Ну на первый взгляд.

-- Сб июн 12, 2010 13:54:11 --

Sasha2 в сообщении #330203 писал(а):
Да я с Вами полностью согласен, уважаемый id
Да чего там говорить, посмотрел я еще учебники для МИФИ, МГТУ И МФТИ. Там эту теорему вообще без доказательства принимают (во всяком случае в матане). Так что выходит ранг этой теоремы только для мехмата МГУ. Ну так и надо честно говорить, что эта трудная теорема, а не умничать, как Зорич, пытясь свои три строчки выдавать за доказательство.

А ведь доказательство-то прозрачное! Вы правы, в Натансоне очень понятно изложено.Там даже картинка вроде есть. Нет, тут Зорич виноват, у него какая-то ленность привести четкое доказательств, чисто для себя его структурировать.

 
 
 
 Re: Теорема Шредера (Кантора) Бернштейна
Сообщение12.06.2010, 14:49 
Ну я имел в виду, конечно, что Камынин также по стилю напоминает Зорича, то есть такое же сжатое изложение с использованием топологии и дифференциальной геометрии.
А насчет этой теоремы, так ее даже и великие математики сперва с ошибками доказывали, поэтому там время от времени, то появляется Шредер, то исчезает.
Видел еще в сети вот такое название лекции "Три доказательства теоремы Кантора-Бернштейна", автор Бегунец. К сожалению саму лекцию скачать не получилось. Просто не нашел. А хотелось бы.

А вот ниже некоторые отзывы о том и о другом:

Когда я учился на 1-2 курсах, матан читали на одном потоке Зорич, а на другом - Камынин. Я помню ожесточенные споры студентов о том, кто же лучше.
Камынин читал лекции просто потрясающе -- в том смысле, что записывать их не было смысла, водили пальцем по только что изданному учебнику, и ни одну запятую, ни одну цифру он за все время чтения курса не перепутал... Если требовалось найти дельта от эпсилон, то никогда не было так, чтобы в итоговом неравенстве получилось "Что-то < эпсилон/2", было строго " < эпсилон"! Такая математическая "тщательность" вызывала восхищение у студентов. Кроме того, все формулировалось и доказывалось "от" и "до", не допускались рассуждения "на пальцах".
У Зорича был несколько иной подход. Доказательства все были также тщательными, но он еще приводил и наводящие соображения, разбирал до общих теорем их простые частные случаи, показывал идею "на пальцах". Мне кажется, что это более правильно. Конечно, для первокурсников, падающих в обморок от восхищения при слове "диффеоморфизм", испещренные исключительно выкладками страницы камынинского учебника кажутся интереснее и предпочтительнее какого-нибудь более "словесного" изложения предмета. Только через некоторое время все эти формулы с дельтами от эпсилонов забываются, а показанные на пальцах идеи и образы остаются надолго. И если вы все-таки выбираете для изучения матана учебник Камынина, и если есть желание этот матан узнать поглубже, а не просто сдать, то будьте готовы к очень большой работе - не только разобраться в формулах, но и вычленить из них основные идеи, а из ряда разделов курса еще и геометрическую интерпретацию всех этих формул и теорем. Иначе через очень короткое время из шести (!!!) (или чуть меньше, сейчас уже не помню) теорем Дини не вспомните ни одной...


>Мужики! Читайте Камынина!!! Не пожалеете! Нет ну если конечно хотите >просто "скинуть" манатн и не стремитесь к чему то большему, то можно и >Зорича "полабать".

Учебник Зорича гораздо лучше, даже несмотря на опечатки. Сергей правильно пишет про основные идеи, геометрическую интерпретацию и т.д. Кстати, я учился в то же время, и тогда не лекции Зорича люди специально ходили с других потоков. Не знаю, как сейчас...

Подход Камынина к лекциям мне ближе,т.к. функанообразные науки, в частности мат. анализ, не терпят размахивания руками и объяснения на пальцах. На первом этапе изучения матана все должно быть четко и строго, иначе о каком глубинном понимании может идти речь, когда человек не овладел строгим математическим определением фундаментального понятия. Я, к сожалению, не застал лекторства Камынина, но, к счастью, учился у Гаврилова, который судя по тому, что я прочитал выше, является продолжателем его традиций на мехмате. Выпустил бы он еще свой учебник. Это был бы хит сезона!

Я в свое время слушал лекции по матану на потоке Камынина. У меня также есть его учебники (оба тома). Я не думаю, что по этому учебнику можно нормально *учить* матан. Люди, говорящие, об интуиции правы. Геометрическая интуиция - важнейшая, а может и первостепенная составляющая всех "функанообразных" наук. И это в учебниках Камынина отсутствует как класс.

С другой стороны, сейчас, когда мне нужна ссылка на точное определение или доказательство и т.п., я пользуюсь только Камынинским учебником.

Мне кажется, что оба учебника замечательны каждый по своему. Точность формулировок определений и строгость доказательств теорем учебника Камынина с одной стороны, наглядность и насыщенность примерами практических задач учебника Зорича с другой, делают эти два учебника "величайшим достоянием высшей школы", как сказал Садовничий.
Что касается высказывания Эндоморфизма Фробениуса об Олимпе, то я хочу заметить, что если вы собрались на олимп, то мало изучить учебник Камынина или Зорича, скорее всего стоит не только проработать и тот и другой, но и заглянуть в "Анализ" Шварца, "Курс математематического анализа" Никольского, наконец учебник Гурса, но и этого все равно мало - нужно много работать и, особенно, с научными статьями, публикуемыми в математических журналах, а также с первоисточниками - работами Банаха, Гильберта, Вейля и др.

 
 
 
 Re: Теорема Шредера (Кантора) Бернштейна
Сообщение12.06.2010, 18:21 
Аватара пользователя
У меня создалось убеждение, что эти курсы анализа (Зорич, Камынин, возможно Шилов) написаны под влиянием учебников французских бурбакистов - Шварца, Дьедонне, Картана. Есть мнение (прочёл статью в матпросвещении) что такой формальный подход в преподавании привёл к тому, что во Франции стало меньше математиков крупного калибра (да и в России тоже). По моему мнению учебник по анализу должен быть как можно проще. Абстрактной математики как можно меньше - хотя евклидовы пространства, сходимость и линейные отображения в них не помешают. Побольше примеров - как у Зельдовича, Яглома, Мышкиса ... А абстрактная математика пойдёт позже в других курсах.

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group