2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В раздел Пургаторий будут перемещены спорные темы (преимущественно псевдонаучного характера), относительно которых администрация приняла решение о нецелесообразности продолжения дискуссии.
Причинами такого решения могут быть, в частности: безграмотность, бессодержательность или псевдонаучный характер темы, нарушение автором принципов ведения дискуссии, принятых на форуме.
Права на добавление сообщений имеют только Модераторы и Заслуженные участники форума.



Начать новую тему Ответить на тему
 
 Гомологическая алгебра. Что это?
Сообщение10.01.2019, 21:38 


18/06/10
323
Моя любимая игра,- это вставлять в различные разделы математики дифференциальное уравнения $f^{(n)} =f$.
Гомологическая алгебра сама напрашивалась на это. Комплексы,- это дифференциальные градуированные объекты.
Комплексы содержат ядро или циклы:
$Z_n(C, d)=\operatorname{Ker}_n(d_n)\subseteqC_n$
Комплексы содержат образы или границу:
$B_n(C, d)=I_m(d_n+1)\subseteqC_n$
Так как
$B_n(C, d)\subseteq Z_n(C, d)\subseteq C_n$
То ядро можно факторизовать по образу.
Все это,- и цикличность, и ограничение есть в дифференциальном уравнении $f^{(n)}=f$. А для расчетов дифференциальное уравнение дает базис и систему уравнений.
Для комплексов для расчетов служат функторы точные справа и с лева $\operatorname{Ect}, \operatorname{Tor}$. Но и комплексы и $\operatorname{Ect}$ и $\operatorname{Tor}$ используются в алгебре Ли и в алгебре Хопфа. А гомология групп возникла раньше гомологической алгебры.
Тогда единственной задачей гомологической алгебры является обоснованием проекта теории категорий.
В гомологической алгебре есть только одна формула $d^2=0$.
И тогда гомологическая алгебра является философией обоснования десятичной системой счисления.
Хотелось бы услышать другое мнение.
Так что есть ГА,- обобщением, зиккуратом или что-то другое?

 Профиль  
                  
 
 Re: Гомологическая алгебра. Что это?
Сообщение10.01.2019, 22:05 
Заслуженный участник
Аватара пользователя


06/10/08
6422
:facepalm:

 Профиль  
                  
 
 Re: Гомологическая алгебра. Что это?
Сообщение10.01.2019, 22:23 
Аватара пользователя


04/10/15
291
Производный от $\operatorname{Hom}$ обозначается $\operatorname{Ext}.$

 Профиль  
                  
 
 Posted automatically
Сообщение10.01.2019, 22:27 
Супермодератор
Аватара пользователя


20/11/12
5728
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Пургаторий (М)»
Причина переноса: бредогенерация

 !  timots, предупреждение за бредогенерацию. Попробуйте ещё раз, но по правилам форума.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 4 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group