kp9r4d,
Гомологическая зеркальная симметрия, о которой вы говорите, это все-таки математика.
Цитата:
А мне и как раз. Я к философии вполне нормально отношусь, я же не физик. :3
Аналогично, просто я зато, чтобы не обманывать ни себя, ни других, что ваши (не ваши конкретно) результаты могут изменить всю математику. Когда начинаются разговоры про переопределения всех математических понятий и революции в "рабоче-крестьянских" (то есть не мета-математических) областях, жди жульничества.
Но, опять же, это верно и с обратной стороны, и в других математических областях. Помнится, Конн (прекрасный математик сам по себе) с соавторами обещал доказать гипотезу Римана с помощью некоммутативной геометрии. Ну зачем вот эта пошлость? Занимались бы некоммутативной геометрий, интересная область, у вас там были интересные результаты.
Цитата:
Это так, но я говорил про высокоуровневые результаты. Высокоуровневые - в смысле общности формулировок теорем и приложимости к различным контекстам, а не в смысле элитарности каких-то внутрематематических сословий, т.е. решение задачи Навье-Стокса - это низкоуровневый результат, но тем не менее очень мощный и очень нужный.
Зеркальная симметрия - это один из самых высокоуровневых сюжетов в математике, в физике, думаю, тоже, и даже урезанные его версии формулируются только на языке
-категорий.
А, извиняюсь, понял, что вы хотели сказать. Ну, все-таки не надо переоценивать то, насколько один даже прорывной результат, влияет на "различные контексты". Та же схемная техника Гротендика, по праву являющаяся одним из величайших достижений двадцатого века, не так проникла во всю математику, как хотелось бы. Даже внутри алгебраической геометрии многие вопросы относятся к классической АГ, либо к комплексно-аналитической, где схемный язык возникает редко.
-- 05.10.2017, 02:06 --Хм, а вот аналог спектральной теоремы для существенно нормального оператора на гильбертовом пространстве - это анализ или алгебра? Рассказать, как его люди доказывают? (Спойлер: через К-homology)
В математике есть соприкосновения различных областей, но они не так часто происходят, поэтому нужно воспринимать их как дар, а не как данность. Миша Вербицкий, например, воспринимал как данность, в результате написал свой известный текст про то, "что должен знать каждый математик" с основным посылом, что все области математики едины, и каждый математик обязательно должен знать каждую из них - от ПДУ до алгебраической К-теории; а что обособлено от остального, то не математика вообще. Миша хороший математик, но тогда он явно потерял связь с реальностью, и даже сейчас признаваться не хочет (хотя в последней его программе для бакалавров он уже убеждает людей в том, что алгебраическую топологию учиться не надо). А посмотрите его работы - почти все есть комплексная геометрия, там и четверти из того, о чем он написал в своем манифесте, нет. Да там и серьезной схемной техники немного, если уж будем откровенны.
В области ПДУ, например, были похожие вещи, как h-принцип Громова, базирующийся на топологии гладких многообразий, прекрасный результат прекрасного математика, но революции не получилось. С другой стороны, я и не помню, чтобы и сам Громов обещал чего-то сверхъестественного.