2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки



Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Вариация МТФ
Сообщение18.04.2017, 17:20 
Аватара пользователя


22/11/13
86
По мотивам вот этой темы.

Формула, которуя я вывел, оказалась не совсем верной, но нашлись интересные частные случаи. Например вот такой:

$\frac{n^{2p}-(n+2^p\cdot(\frac{n(n-1)}{2}))}{p} = \frac{n^{2p}-n(1+2^{p-1}\cdot(n-1))}{p}$

p - простое. Остаток при делении равен нулю. Почему?

 Профиль  
                  
 
 Re: Вариация МТФ
Сообщение18.04.2017, 18:52 
Заслуженный участник
Аватара пользователя


01/03/06
12806
Москва
kthxbye в сообщении #1210462 писал(а):
$\frac{n^{2p}-(n+2^p\cdot(\frac{n(n-1)}{2}))}{p} = \frac{n^{2p}-n(1+2^{p-1}\cdot(n-1))}{p}$

p - простое. Остаток при делении равен нулю. Почему?


Вот почему: $\frac{n^{2p}-(n+2^p\cdot(\frac{n(n-1)}{2}))}{p} =\frac{n^{2p}-n^2}{p}-\frac{(n^2-n)(2^{p-1}-1)}{p}$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 2 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: svv


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group