2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Простая задачка по квантовой механике
Сообщение17.01.2017, 20:55 


17/01/17
25
Тут у меня с другом возник спор по поводу простейшей задачки. Итак, пусть есть квантовая система с зависящим от времени гамильтонианом следующим образом:
$H(t) = B(t)H_0$ ,
где $B(t) = \begin{cases}
1,&\text{если $t\leq t_0$;}\\
A,&\text{если $t>t_0$.}
\end{cases}$
($t_0>0$)
$H_0$ от времени не зависит, и пусть у него среди прочих есть какой-то собственный вектор $|n\rangle$ :
$H_0|n\rangle = \varepsilon_n |n\rangle$

Как будет эволюционировать со временем волновая функция системы $|\psi (t)\rangle$, если в момент $t=0$ было $|\psi (t)\rangle = |n\rangle$ ?

Мое решение такое:

Уравнение Шредингера
$i|\dot\psi (t)\rangle = H(t)|\psi (t)\rangle$

Имеет решение:
$|\psi (t)\rangle = U(t)|\psi (0)\rangle = \exp(-i\varepsilon_n\int_0^tB(t')dt')|n\rangle$

То есть, состояние не меняется в результате скачка гамильтониана, просто начинает быстрее/медленнее крутиться фаза.

Мой же оппонент полагает, что из-за скачка будет все не так просто. Как полагаете вы?

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение17.01.2017, 21:24 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Будет "всё не так просто".

В момент скачка надо разложить старый с.вектор по базису новых. На это есть даже типовые задачи.

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение17.01.2017, 21:27 


17/01/17
25
Munin в сообщении #1185521 писал(а):
Будет "всё не так просто".

В момент скачка надо разложить старый с.вектор по базису новых. На это есть даже типовые задачи.


А разве это не один и тот же базис? Это ж всего лишь множитель в Гамильтониане. Он влияет на собственные значения, но не на вектора.

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение17.01.2017, 21:46 
Заслуженный участник
Аватара пользователя


30/01/06
72407
pvp в сообщении #1185524 писал(а):
А разве это не один и тот же базис?

Вообще говоря, информации недостаточно. Энергия может быть добавлена разными способами. По сути, мы имеем дело с двумя разными квантовыми системами: до скачка, и после скачка.

Для аналогии, рассмотрите движение свободной частицы, если потенциал в одном полупространстве 0, а в другом - $U.$ Волна, набегая на эту ступеньку, не просто "поднимется", а станет другой волной. Потому что она пытается сохранять энергию. Вы же не оговорили, сохраняет ваша система энергию в момент скачка, или нет. Если нет - то как найти энергию, переданную извне? Это не указанный параметр.

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение17.01.2017, 22:02 


17/01/17
25
Munin в сообщении #1185530 писал(а):
Вообще говоря, информации недостаточно. Энергия может быть добавлена разными способами. По сути, мы имеем дело с двумя разными квантовыми системами: до скачка, и после скачка.


Вполне достаточно. Я определил то, как зависит гамильтониан от времени. Задал вектор состояния в нулевой момент времени. С помощью нестационарного уравнения Шредингера (через Т экспоненту, но она переходит в обычную экспоненту, т.к. гамильтониан коммутирует сам с собой в разные моменты времени) выразил вектор состояния в произвольный момент времени через начальный. Все.

Munin в сообщении #1185530 писал(а):
Для аналогии, рассмотрите движение свободной частицы, если потенциал в одном полупространстве 0, а в другом - $U.$ Волна, набегая на эту ступеньку, не просто "поднимется", а станет другой волной. Потому что она пытается сохранять энергию. Вы же не оговорили, сохраняет ваша система энергию в момент скачка, или нет. Если нет - то как найти энергию, переданную извне? Это не указанный параметр.


Это неверная аналогия. С натяжкой можно сказать, что ваша аналогия - это quench вида $H_0\rightarrow H_0 + V, \; [H_0,V]\neq 0$. Правильной же аналогией будет представить не прецессирующий спин в магнитном поле, т.е. направленный по полю. От того, что мы усилим поле (не изменив его направления) спин не повернется.

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение17.01.2017, 22:12 
Заслуженный участник
Аватара пользователя


28/04/16
2395
Снаружи ускорителя
pvp в сообщении #1185533 писал(а):
От того, что мы усилим поле (не изменив его направления) спин не повернется.

В Вашем условии не было ничего про "усиление поля" (хотя бы, $A>1$). Ну и к тому же, с чего Вы решили, что не повернется? Не точная аналогия, но всё ж: волновой пакет налетает на барьер с энергией, меньшей, чем у пакета. Он пролетит этот барьер, или отразится?

(про точку)

А, кст, разве форма записи ур-я Шрёдингера $i \hbar \dot{\psi} = \hat{H}\psi$ разве не неправильная, т.к. точка, вроде -- это $\frac{d}{dt}$, а не $\frac{\partial}{\partial t}$?

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение17.01.2017, 22:16 


17/01/17
25
madschumacher в сообщении #1185536 писал(а):
В Вашем условии не было ничего про "усиление" (как минимум, $A>1$). Ну и, с чего Вы решили, что не повернется? Не точная аналогия, но всё ж: волновой пакет налетает на барьер с энергией, меньшей, чем у пакета. Он пролетит этот барьер, или отразится?


Аналогия не точная. Потому что барьер у вас есть постоянно. Вот если бы было пустое пространство с размазанной частицей, а потом вдруг внезапно в какой то части пространства изменилась потенциальная энергия - тогда да, что-то похоже, но это был бы quench, который я описал выше. В этом вашем случае гамильтониан не коммутирует сам с собой в разные моменты времени. А в моей задаче - коммутирует.

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение17.01.2017, 22:25 
Заслуженный участник
Аватара пользователя


28/04/16
2395
Снаружи ускорителя
pvp в сообщении #1185538 писал(а):
А в моей задаче - коммутирует.

Ну кст, хороший аргумент. Типа, что лишняя/недостающая энергия отдастся/возьмется внешнему потенциалу? Имхо, логично на первый взгляд, но надо подумать... :?
Правда, работает ли Ваше решение через оператор эволюции $\hat{U}=\exp(-i\hat{H}t/\hbar)$? Разве оно не для Гамильтониана, не зависящего от времени? А у Вас он ещё как от времени зависит (с особенностью ещё, разрыв первого рода как-никак...). Хотя, могу и ошибаться... :oops:

Может попробуете рассмотреть модельную систему из 2х стационарных состояний, $A \rightarrow 1$, и применить временную теорию возмущений для момента времени $t_0+\Delta t$?

(спойлер)

вроде, Ваш оператор возмущения в этом случае будет $\hat{W}=(1-A)\hat{H}_0$, $(1-A)$ -- малый параметр, а Всё остальное -- халтура...

А потом тут расскажите, а то самим то лень решать... :lol:

(хотя что там решать то...)

Армянское радио спрашивает -- армянское радио отвечает...
Коэффициенты же для "примешивания" других состояний в нестационарной теории возмущений Р-Ш 1-го порядка $a_{n \rightarrow m}^{(1)}\propto \langle n | \hat{W} |m \rangle$, а в Вашем случае $\langle n | \hat{W} |m \rangle \propto \delta_{nm}$, так что похоже, что Вы правы (в этой упрощенной модели, как минимум)...

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение17.01.2017, 23:22 


17/01/17
25
madschumacher в сообщении #1185541 писал(а):
Разве оно не для Гамильтониана, не зависящего от времени? А у Вас он ещё как от времени зависит (с особенностью ещё, разрыв первого рода как-никак...).


Именно так. Зависит. Но никаких приближений делать не нужно. Начинаем с Т-упорядоченной экспоненты:
$U(t) = T\exp[-i\int_0^tH(t')dt']$
И далее можно разными способами показать, что букву Т можно смело убирать. Можно разложить в Dayson series, или Magnus series, а можно совсем дуболомно написать:
$U(t) = T\exp[-i\int_0^tH(t')dt'] = e^{-iH(t)dt}e^{-iH(t-dt)dt}\dots e^{-iH(0)dt}$
И вспоминая формулу Троттера:
$e^Ae^B = e^{A+B}, \; \mathrm{if} \; [A,B]=0$
и применяя ее ко всем этим экспонентам получаем то, что я писал выше. Функция с разрывом стоит в интеграле, так что все ОК. Именно поэтому важна коммутация в разные моменты времени.

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение17.01.2017, 23:26 
Заслуженный участник
Аватара пользователя


28/04/16
2395
Снаружи ускорителя
А, ну тогда, имхо, все логично и Вы правы :D (хотя меня слушать не надо, я в этом не шарю, пусть спецы комментируют :lol: ).

-- 17.01.2017, 21:48 --

pvp, кст, через:
Munin в сообщении #1185521 писал(а):
В момент скачка надо разложить старый с.вектор по базису новых.

ещё проще всё показать: т.к. у Вас $[\hat{H}_0,A\hat{H}_0]=0$, то у Вас собственные вектора $\hat{H}$ до и после $t_0$ -- одни и те же, и переразложение "старого" состояния по "новому" базису даст всё то же самое. :wink:

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение18.01.2017, 02:35 


27/11/10
207
madschumacher в сообщении #1185555 писал(а):
у Вас собственные вектора $\hat{H}$ до и после $t_0$ -- одни и те же

У ям глубиной $U_0$ и $AU_0$ разный спектр и собственные вектора.

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение18.01.2017, 03:25 


17/01/17
25
Taus в сообщении #1185574 писал(а):
madschumacher в сообщении #1185555 писал(а):
у Вас собственные вектора $\hat{H}$ до и после $t_0$ -- одни и те же

У ям глубиной $U_0$ и $AU_0$ разный спектр и собственные вектора.


Речь не идет про спектр ямы $U$, а про спектр и собственные вектора полного гамильтониана $H$

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение18.01.2017, 05:53 


17/09/09
226
Поможет?
Книги:
1) Внезапные возмущения и квантовая эволюция - авторы Александр Дыхне, Геннадий Юдин
аннотация книги:
Книга посвящена систематическому описанию широкого круга процессов взаимодействия квантовых систем на основе концепции встряски. В рамках последовательной теории внезапных и полувнезапных возмущений проанализированы основные особенности кулоновского возбуждения и комптоновской ионизации атомов, столкновений во внешнем лазерном поле, эффектов атомной структуры в ядерных реакциях и других явлений.

2) А. И. Базь, Я. Б. Зельдович, А. М. Переломов. Рассеяние, реакции и
распады в нерелятивнстской квантовой механике. "Наука", 1971.
Вроде есть параграф про внезапные возмущения.

Обзоры УФН тех же авторов, что и книга 1)
1) Дыхне А М, Юдин Г Л ""Встряхивание" квантовой системы и характер стимулированных им переходов" УФН 125 377–407 (1978)
2) Дыхне А М, Юдин Г Л "Вынужденные эффекты при "встряске" электрона во внешнем электромагнитном поле" УФН 121 157–168 (1977)

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение18.01.2017, 12:17 
Заслуженный участник
Аватара пользователя


28/04/16
2395
Снаружи ускорителя
Taus в сообщении #1185574 писал(а):
У ям глубиной $U_0$ и $AU_0$ разный спектр и собственные вектора.

Так кинетическую энергию тоже меняют на этот же множитель.

 Профиль  
                  
 
 Re: Простая задачка по квантовой механике
Сообщение18.01.2017, 17:54 
Заслуженный участник


29/09/14
1241
pvp в сообщении #1185512 писал(а):
То есть, состояние не меняется в результате скачка гамильтониана, просто начинает быстрее/медленнее крутиться фаза.
Наверное, это верно, потому что такое решение (со скачком зависящей от времени фазы из-за изменения энергии в $A$ раз, но без изменения $\psi_n(\vec{r}))$ действительно удовлетворяет уравнению Шрёдингера и начальному условию.

Вот простейший частный пример на более-менее наглядном языке: пусть имеется свободная частица в состоянии с определённым импульсом $\vec{p},$ её волновая функция $|n\rangle$ - плоская волна $\psi_{\vec{p}}(\vec{r}). $ Понятно, что в таком состоянии может находиться частица с любой массой $m.$ Гамильтониан $H_0=\hat{\vec{p}}^2/(2m)$ и энергия состояния (при заданном $\vec{p}$) зависят от массы, но импульс и $\psi_{\vec{p}}(\vec{r}) $ ничего "не знают" про массу частицы. Умножение гамильтониана на константу здесь можно понимать как замену исходной частицы частицей с другой массой. Возмущённый таким образом гамильтониан $H(t)$ по-прежнему коммутативен с оператором импульса, поэтому $\vec{p}$ сохраняется. Дело выглядит так, будто в момент $t_0$ мы каким-то образом подменяем исходную свободную частицу частицей с другой массой, но с прежним импульсом, и поэтому с прежней $\psi_{\vec{p}}(\vec{r}),$ а энергия частицы будет, разумеется, другой.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 18 ]  На страницу 1, 2  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Ignatovich


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group