Я очень поверхностно знаком с этой областью. Скорее всего, проводились какие-то поиски полиномов для простых чисел, типа знаменитого

. Ну и набрели на полином с большими пустыми интервалами в самом начале. Алгоритмически такой перебор организовать несложно, если есть функция проверки на простоту для достаточно простых чисел и огромное количество времени. Впрочем, я могу переоценивать.
Но неинтересно будет представить полином сотой степени с восьмизначными коэффициентами, который даёт миллион составных при последовательных натуральных значениях аргумента. А что-нибудь вида

подойдёт, хотя и со скрипом.
Наверняка это уже исследовано, хотя сомневаюсь, что теоретически.
Ну если в рукопашную попробовать, то для первой степени я приводил пример, а для второй вот:

. Даёт десять составных. Мало, но с чего-то нужно начинать

.