Если отсутствует и неконструктивный пример
Неконструктивный пример построить очень легко, если принять аксиому о существовании промежуточного множества. А именно такой: "Согласно аксиоме о существовании промежуточного множества, существует хотя бы одно множество промежуточной мощности. Возьмём одно из таких множеств и обозначим его через
. Тогда
- пример множества промежуточной мощности".
По-моему, это очень даже "неконструктивный пример".
То есть, если при построении примера Вы запрещаете пользоваться аксиомой о существовании промежуточного множества, то построить пример нельзя в силу неопровержимости континуум-гипотезы. Если же разрешаете, то вот он - см. рассуждение выше. Догадываюсь, что такой пример вряд ли Вам понравится. Но ведь во всех "неконструктивных примерах" делается примерно то же самое - доказывается существование множества без его конкретного построения, доказывается с опорой на аксиомы - там аксиому выбора и другие. Просто не всегда доказательство такое короткое.
-- 12.03.2016, 21:30 --Вообще, задумайтесь над тем, что множество всех подмножеств отрезка
имеет мощность гиперконтинуума. Но из этого гиперконтинуума только очень малое - пренебрежимо малое - количество множеств можно как-то описать, задать какой-то формулой или построить в результате какого-то рассуждения. Потому что множество всех возможных математических формул и математических рассуждений счётно, и поэтому счётно также количество множеств, которые можно задать какой-то формулой, или вообще как-то построить.
Вот и множество промежуточной мощности, даже если оно существует, не входит в это счётное количество (при запрете на использование аксиомы о его существовании). Можно считать, что оно настолько сложное, что его описание находится за гранью человеческих возможностей.