2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 12:46 
Почему
если ответить сложно прошу дайте ссылку


 i  Ответ дан в следующем сообщении.
В связи с флудом в ветке она перенесена в «Чулан».
В следующий раз почитайте учебник, перед тем как задавать вопрос в «ПРР (М)».
/ GAA

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 12:53 
Аватара пользователя
Учебник по теории вероятностей.

И поэкспериментируйте с подбрасыванием монетки. Её надо бросать так, чтобы она быстро кувыркалась. Будет ли герб аккуратно выпадать каждый второй раз?

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 13:13 
doom701 писал(а):
Есть такое подозрение что А обязательно произойдет на бесконечности,
Это как предел в математике

Так и есть. Если Вы получите формулу для рассчета вероятности наблюдать событие хотя бы раз за n дней, то при n стремящимся к бесконечности в пределе получится 1. А для того,чтобы получить формулу, достаточно вспомнить, что сумма вероятностей всех исходов равна 1. Поэтому проще всего найти вероятность того, что ни в один день не произойдет данного события (это вообще является тривиальной задачей), а затем эту вероятность вычесть из 1.
Отсюда вы и получите, что вероятность наблюдать событие (с вероятностью 0.1 в день) хотя бы раз за 10 дней примерно равна 0.65

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 14:28 
Someone мне кажется с монеткой какой-то нафталиновый пример, не честный. дается постулат, что у идеальной монетки вероятность выпадания стороны 1/2.
ну вот бросает человек монетку. мы говорим тогда, что нужно достаточно большое число выборки, ну бросить там 10 000 раз или миллион, чтобы получить, допустим значения, 49,9% орел 50,1% решка. далее мы строим простого робота, который бросает монетку по заранее рассчитанным параметрам высоты, силы броска и тд. таким образом что выпадает все время решка. и сажаем его в идеальный бункер (ну, т.е. условия эксперимента не меняются). изменится ли что-нибудь через какое-то кол-во бросков? куда девается случайность в данном случае?

это я к тому все, что спрашивал:

doom701 в сообщении #1062853 писал(а):
А в физическом разделе задал вопрос потому что многие физические процессы например


для каждого броска монетки в таком разрезе вопроса - вероятность всегда своя, для этого конкретного броска. я бы предположил, что абсолютные значения 0 или 1 для физического мира не пригодны, как и понятие абсолютно случайного.

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 14:56 
Аватара пользователя
Floating point в сообщении #1063051 писал(а):
это я к тому, что для каждого броска монетки - вероятность всегда своя, для этого конкретного броска.
:shock: Это высказывание вообще невозможно интерпретировать, ИМХО. Когда мы говорим о бросании монетки, мы имеем в виду частотное определение вероятности, как предельного значения частоты при массовом проведении эксперимента. "Вероятность" в одном броске -- это не вероятность. Невозможно придать этому высказыванию математический смысл.

-- 15.10.2015, 14:57 --

Floating point в сообщении #1063051 писал(а):
я бы предположил, что абсолютные значения 0 или 1 для физического мира не пригодны, как и понятие абсолютно случайного.

Для физического -- разумеется, непригодны. Вероятность -- это математическая модель.

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 15:01 
provincialka в сообщении #1063069 писал(а):
мы имеем в виду частотное определение вероятности, как предельного значения частоты при массовом проведении эксперимента.


массовое проведение эксперимента - попытка подтверждения математической вероятности. наверное, когда-то давным-давно, кто то и подбрасывал действительно )). всегда будет какое то кол-во знаков после запятой.

И, кстати,
provincialka в сообщении #1063069 писал(а):
"Вероятность" в одном броске -- это не вероятность
вероятность в одном броске это вероятность 1/2. Математическая. Но только до того момента, как совершен бросок в реальности. Поэтому с монеткой пример как раз нехорош! он показывает наоборот, что это сумма вероятностей. и чтобы выгрести под математику - нужно набрать достаточно большую статистику.

Я получше пример топикстартеру скажу: я загадал число от 1 до 10, вы отгадываете . какая вероятность угадать (2 попытки)? возможно ли, что мы 100 раз загадаем и вы никогда не угадаете? возможно ли, что мы бесконечно будем загадывать и вы никогда не угадаете?


(Оффтоп)

Сидит чукча, и думает: "Зима холодная или тёплая будет, однако? Дрова готовить, не готовить? Пойду-ка к шаману, у него узнаю!"
Приходит к шаману, и спрашивает: "Зима холодная или тёплая будет, однако? Дрова готовить, не готовить?"
Шаман думает: "Блин, скажу, что тёплая будет, замёрзнет, скажу-ка лучше я, что будет холодная"
Ушёл чукча, а шаман думает: "А если тёплая зима будет?..., пойду к метеорологам!"
Приходит к метеорологам, спрашивает: "Зима холодная или тёплая будет, однако?" А те отвечают: "Холодная будет"
"Почему?"- спрашивает шаман;
"А вон видишь - чукча на зиму дрова готовит!"

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 16:56 
doom701 в сообщении #1062990 писал(а):
Я понял что мое представление о вероятности тупое

Давайте мы Ваши представления о теорвере немножко "заостирим". Надеюсь, Ваше недоумение от полученных ответов несколько развеется:

НЕ наступление ожидаемого события — это тоже событие, вероятность которого равна, естественно, 1 — p на том временном промежутке, где p — вероятность желаемого события. Вот и прикиньте, какое из событий произойдёт "обязательно", т.е. с вероятностью = 1 при t стремящемся к бесконечности. :D

Ну а если более конкретно, то Ваша задача подпадает под т.н. распределение Пуассона. Найдёте в Wiki, если не знаете.


Mihaylo в сообщении #1062895 писал(а):
Самая главная ошибка в том, что у вероятности не должно быть размерности. Никаких "% в день", "% на килограмм", "% на квадратный метр". Вероятность - безразмерная величина от 0 до 1. Событие либо произойдет, либо не произойдет.

Это не главная, и вовсе даже не ошибка. Это чисто терминологический момент. Считайте просто, что определённый отрезок времени = циклу испытания. Но цикл может быть как длиннее, так и короче того, что задан в условии. В некоторые формулы для вычисления вероятностей входит отношение протяжённостей циклов.

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 16:59 
Аватара пользователя
 !  AL Malino, замечание за неоформление формул $\TeX$ом

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 17:01 
Аватара пользователя
Floating point в сообщении #1063072 писал(а):
возможно ли, что мы бесконечно будем загадывать и вы никогда не угадаете?

Тут еще надо уточнить: "Мы" все время загадываем новое число? В противном случае пример неудачный: броски монетки -- независимые события, а отгадывание одного и того же числа -- зависимые.

А вот как происходят события в задаче у ТС -- мы не знаем. Информации не хватает.

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 17:06 
Deggial в сообщении #1063104 писал(а):
AL Malino, замечание за неоформление формул $\TeX$ом

Покорнейше прошу простить, но пользоваться сей штуковиной я не умею. :cry:
Да и формулы-то у меня чисто символические, просто текстовые сокращения. :wink:

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 17:08 
Аватара пользователя
AL Malino
Раз чисто символические -- то просто ставьте по бокам от формулы знаки доллара. А еще можно навести на "чужую" формулу мышку -- и вот она, как на ладони!

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 17:09 
Аватара пользователя
 i 
AL Malino в сообщении #1063108 писал(а):
Покорнейше прошу простить, но пользоваться сей штуковиной я не умею. :cry:
правила обязывают

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 18:07 
provincialka в сообщении #1063105 писал(а):
Тут еще надо уточнить: "Мы" все время загадываем новое число? В противном случае пример неудачный: броски монетки -- независимые события, а отгадывание одного и того же числа -- зависимые


Т.е. вы мою мысль и подтвердили ). Бросок монетки с т.з. математической вероятности имеет: 1 событие, 2 равновероятных исхода события, т.е. получаем 1/2. А с т.з. экспериментальной вероятности мы имеем серию бросков - независимые события, если бы природа следовала строго математической модели - то невозможно было бы выкинуть два раза подряд одинаковой стороной монетку, к счастью это не так )) ) Про числа - от 1 до 10, любые загадывать можно. загадаю ли я одно и то же число 2 раза подряд или нет - это тоже независимые события. можете заменить на генератор случайных чисел "загадчика", мы ж не в покер играем )
Зависимость там только одна - загадал я семерку, есть две попытки угадать. Вы отвечаете - пять, я говорю - не угадали. т.е. вероятность угадать во второй попытке увеличилась. в серии из ста экспериментов со случайными числами, неважно, давая одну попытку на отгадывание или две есть ненулевая вероятность такого исхода, что не будет угадано ни одно число.

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 18:32 
Аватара пользователя
Floating point в сообщении #1063127 писал(а):
Т.е. вы мою мысль и подтвердили

Нет. Не совсем. Не могу сказать, что я её и поняла :-(
Вы написали много, но непонятно.

 
 
 
 Re: Глупый вопрос по теории вероятности
Сообщение15.10.2015, 18:48 
provincialka
Ну вот смотрите. математическая модель - монетка, 2 исхода события, но это модель не совсем точна. почему? да потому, что в реальности то, что монетка станет на ребро - это очень маловероятное событие, но не невозможное. достаточно взять монетку потолще с плоским ребром, чтобы эту вероятность увеличить. тогда получится, что и модель надо подправлять? улавливаете?

когда мы кидаем монетку рукой - до броска подразумевается мат. вероятность выпадения 1/2, после совершения броска вступают реальные физические законы - как бросили, с какой силой, какой стороной и тд. и у нас уже не вероятность 1/2, а некая другая. это даже уже не вероятность, а точный исход события, нет такого бесконечно малого промежутка времени, в котором бы "кто то свыше" превращал математическую вероятность в реальное событие. если бы мозг человека мог просчитывать все факторы, то человек мог бы выкидывать монетку, как захочет. Поэтому говоря о термине "вероятность попадания молнии в сарай" мы говорим скорее не о математической вероятности, а о степени просчета всех этих параметров в нашей модели, мне кажется нужно это отличать.

 
 
 [ Сообщений: 41 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group